THGEMs: very recent results towards applications in DHCAL & LXe detector readout Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra &

Slides:



Advertisements
Similar presentations
First observation of electroluminescence in liquid xenon within THGEM holes: towards novel Liquid Hole-Multipliers L. Arazi, A. Breskin, A. Coimbra*,
Advertisements

1 Two-phase and gaseous cryogenic avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov Budker.
R&D on Astroparticles Detectors (Activity on CSN )
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Digital Hadron Calorimetry using Gas Electron Multipliers Andy White University of Texas at Arlington.
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Development and first tests of a microdot detector with resistive spiral anodes R. Oliveira, S. Franchino, V. Cairo, V. Peskov, F. Pietropaolo, P. Picchi.
Detectors for Tomorrow and After Tomorrow… Amos Breskin Radiation Detection Physics Group Weizmann Institute 1 Amos Breskin.
Sept. 24, Status of GEM DHCAL Jae Yu For GEM-TGEM/DHCAL Group Sept. 24, 2010 CALICE Collaboration Meeting Univ. Hassan II, Casablanca Introduction.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
A. Breskin RD51 Amsterdam 4/08 ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
A. Lyashenko INSTR08 – BINP – Feb ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
Gaseous photomultipliers and liquid hole-multipliers for future noble-liquid detectors L. Arazi [1], A. E. C. Coimbra [1,2], E. Erdal [1], I. Israelashvili.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
GEM Digital Hadron Calorimetry
Fabio Sauli-CERN 1 IEEE-NSS Rome 04 F. Sauli, T. Meinschad, L. Musa, L. Ropelewski CERN, GENEVA, SWITZERLAND PHOTON DETECTION AND LOCALIZATION WITH THE.
1 Status of GEM DHCAL Andy White For GEM-TGEM/DHCAL Group March 21, 2011 ALCPG11 Workshop Univ. of Oregon Introduction 30cmx30cm 2D readout with KPiX chip.
THGEM “news” Mostly Ne-mixtures… Weizmann M. Cortesi, J. Miyamoto, R. Chechik, A. Layshenko CERN V. Peskov Coimbra & Aveiro J. Veloso, C. Azevedo, J. Escada,
Andy White University of Texas at Arlington For GEM DHCAL Group ESTB Workshop SLAC 2012 Introduction KPiX Readout FTBF Beam Test Setup Beam Test Analysis.
QUPID Readout and Application in Future Noble Liquid Detectors Kevin Lung, UCLA TIPP 2011 June 11, 2011.
TIDE TESTS AT GDD LAB M. Casiraghi and F. Vasi. New detector configuration Low pressure chamber anode.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
What we did up to now: Summary of the measurements performed up to now with the gas setup built for the THGEMs coated with the CsI. Photocurrent measurements.
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
Working Group 1 WG1 Geometry and Interactions Technological Aspects and Developments of New Detector structures.
THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
PNPI, R&D MUCH related activity ● Segmentation ● Simulation of the neutral background influence ● R&D of the detectors for MUCH ● Preparation to the beam.
Rachel Chechik Weizmann Institute TIIPP09 Tsukuba March 2009 The THGEM: a THick robust Gaseous Electron Multiplier for radiation detectors A.Breskin, M.
Itzhak Tserruya, BNL, May13, HBD R&D Update: Demonstration of Hadron Blindness A. Kozlov, I. Ravinovich, L. Shekhtman and I. Tserruya Weizmann Institute,
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Development of Au-coated THGEM for Single Photon, Charged Particle, and Neutron Detection Yuguang Xie a *, Junguang Lv a, Aiwu Zhang a, Boxiang Yu a, Tao.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Application of Large Scale GEM for Digital Hadron Calorimetry Jae Yu For GEM DHCAL Group June 11, 2011 TIPP 2011 The Goals 30cmx30cm 2D readout with KPiX.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
1 HBD R&D: Update Itzhak Tserruya (for A. Kozlov, I. Ravinovich and L. Shekhtman) Weizmann Institute, Rehovot DC meeting Feb. 14, 2003.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
16 Sept PSD 7 Liverpool 1 MHSP with position detection capability MHSP with position detection capability H. Natal da Luz a,b, J.F.C.A. Veloso a,b,
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
Recent THGEM investigations A. Breskin, V. Peskov, J. Miyamoto, M. Cortesi, S. Cohen, R. Chechik Weizmann Institute RD51 Paris Oct 08 - Gain: UV vs. X-rays.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
THGEM Marco Cortesi Weizmann Institute of Science PANIC08 Recent Advances in THGEM Detectors M. Cortesi, A. Breskin, R. Chechik, R. Alon, J. Miyamoto Weizmann.
GEM-MSTPC for direct measurements of astrophysical reaction rates H. Ishiyama 1, K. Yamaguchi 2, Y. Mizoi 3, Y.X. Watanabe 1, T. Hashimoto 4, M.H. Tanaka.
Cryogenic Thick-GEM (THGEM) detectors and their applications Cryogenic Thick-GEM (THGEM) detectors and their applications Affordable instrumentation for.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Andrey Sokolov Novosibirsk State University (NSU) Budker Institute of Nuclear Physics (Budker INP) Novosibirsk, Russia Two-phase Cryogenic Avalanche Detector.
Andy White University of Texas at Arlington For GEM DHCAL Group CALOR 2012 Introduction KPiX V9 and DCAL Integration FTBF Beam Test Setup Beam Test Analysis.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Presented by Samuel DUVAL On behalf of the Xénon group Industry-Academia Matching Event on Micro-Pattern Gaseous Detectors April 2012, Annecy-le-Vieux.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
Large THGEM sampling elements for DHCAL status report
Thick-GEM sampling element for DHCAL: First beam tests & more
Amos Breskin Weizmann Institute of Science
MPGD 2015 Concise Summary Amos Breskin.
standard THGEM versus FLOWER
THGEM: Introduction to discussion on UV-detector parameters for RICH
Development of Hard X-ray Detector with GEM
Status of GEM DHCAL Andy White RD51 Collaboration Meeting CERN
3g Medical Imaging R&D with liquid xenon Compton telescope
GEM-based Digital Hadron Calorimetry for SiD
PHOTON DETECTION AND LOCALIZATION WITH THE
GEM-based Digital Hadron Calorimetry for SiD
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

THGEMs: very recent results towards applications in DHCAL & LXe detector readout Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo, J. dos Santos, H. Natal da Luz, H. Natal da Luz, A. Coimbra Nantes: S. Duval, D. Thers UTA: A. White, S. Park Work within CERN-RD51 Marco Cortesi Weizmann Institute of Science THGEM Recent works: Review NIM A 598 (2009) JINST 5 P JINST 4 P08001

Thick Gas Electron Multiplier (THGEM) SIMPLE, ROBUST, LARGE-AREA Printed-circuit technology  Intensive R&D  Many applications: - THGEM/CsI UV detectors for RICH - Neutron imaging - Charge sensors for DCAL - Cryo detectors for Dark Matter 1 e - in e - s out ~40kV/cm THGEM Double-THGEM: higher gains ~ 10-fold expanded GEM Weizmann Inst. Effective single-electron detection Few-ns RMS time resolution (MIPs/UV) Sub-mm position resolution MHz/mm 2 rate capability Cryogenic operation: OK Gas: molecular and noble gases Pressure: 1mbar - few bar Magnetic fields: OK Thickness 0.5-1mm small rim prevents discharges Weizmann Inst.

 Comparatively low operation voltages reduced discharge probability, discharge energy and charging-up effects  High gains, even with single-THGEM lower detector thickness (Important for DHCAL)  High single-photoelectron gains even in the presence of ionizing background (higher dynamic range compared to Ar-mixtures) Ne-based mixtures Weizmann Inst.

Gain: Single/Double THGEM in Ne-mixtures Very high gain in Ne and Ne mixtures, even with X-rays At very low voltages !! X-rays: 2-THGEM 100% Ne: Gain 10 ~300V UV: 1-THGEM Ne/CF 4 (10%): Gain > 10 ~800V 10 6 Double-THGEM 9 keV X-rays Single-THGEM CsI PC + UV-light (180 nm) JINST 4 P08001 Weizmann Inst.

DHCAL applications Weizmann Inst.

THGEM-based DHCAL THGEM: sampling elements in Digital Hadron ILC Digital Hadron Calorimetry: Different concepts proposed for the active sampling elements: GEM, RPC, Micromegas… THGEM: a new solution proposed by Univ. Arlington (UTA) & Weizmann  Interlaced steel-plates and THGEM multipliers.  Simple, robust, thin, compact, stable, high gain SIMULATION Weizmann Inst.

May 2010: Chamber Prototype – test with X-rays E Hole E tran E Ind E Drift Ne-mixture Soft X-Ray THGEM1 THGEM2 10 mm 2 mm KPiX 8x8 anode pad layout 100x100mm 2 THGEM Thickness  0.4 mm Hole diam.  0.5 mm Pitch  1.0 mm Rim  0.1 mm Cathode More info about kpix-readout from A. White talk Weizmann Inst.

Gas Inlet Vacuum Pump Gas Outlet KPiX Interface & FPGA boards Pressure gauge KPiX Power supply HV derivation box Detector chamber THGEM Chamber Setup 2 Weizmann Inst.

THGEM + KPiX: Preliminary results 1 Double THGEM detector – Self Trigger operation Irradiation: 6keV non-collimated x-rays Tails due to charge sharing between neighbor pads NE/5%CH 4 Gain ~ 2x fold below max! Weizmann Inst.

THGEM + KPiX: Preliminary results 2 55 Fe X-rays (5.9 keV) COLLIMATED ~22% FWHM Ne/5%CH 4, operation Gain ~ 2x10 3 Max Gain ~ 10 5 Single-THGEM 55 Fe Gain ~ 2x10 3 Ne/5%CH 4 STABLE LONG-TERM OPERATION WITH 55 Fe Weizmann Inst.

DHCAL/THGEM: Future plans 1)Characterization and optimization of the small (10x10 cm 2 ) THGEM-based detector prototype with MIP (beta/cosmic rays) 2)Test beam with small (10x10 cm 2 ) THGEM-based detector prototype (CERN/FNAL) 3)Production of large (30x30 cm 2 ) THGEM electrodes (in cooperation with local industry) 4) Design and construction of large-THGEM based detector (30x30 cm 2 ; 33x100 cm 2 ) 5) Characterization and optimization of large-THGEM based detector in DHCAL (CALICE) Weizmann Inst.

Cryo-THGEM applications Weizmann Inst.

Noble-gas detectors WIMP Gas Liquid e- E Ar, Xe… Primary scintillation Secondary scintillation Electron multiplier &/or photomultiplier photomultiplier Charge &/or scintillation-light detection in liquid phase or Charge &/or scintillation-light detection In gas phase of noble liquids: “TWO-PHASE DETECTORS” Possible applications: Noble liquid ionization calorimeters Noble-Liquid TPCs (solar neutrinos) Two-phase detectors for Rare Events (WIMPs,  -decay, …) Noble-liquid  -camera for medical imaging Gamma astronomy Gamma inspection..... Use THGEM electron multipliers & THGEM/CsI photomultipliers ? Weizmann Inst.

XEMIS LXe Compton Camera LXe-TPC GPM  Tests in LXe: May Nantes cryostat Nantes/Weizmann Weizmann Inst.

Cryo-GPM for LXe Medical Compton Camera THGEM : thickness = 400  m hole Ø = 300  m hole spacing = 700  m rim size = 50  m  V THGEM 4 mm  V THGEM Double-THGEM layout MgF 2 UV window Reflective CsI photocathode Ne/CH 4 GPM location LXe TPC gamma-converter with field shaping Subatech-Nantes/Weizmann 44 Sc  +  emitter LXe Gamma Camera PET 2009 JINST 4 P12008 Weizmann Inst.

2-phase DM detectors XENON100Kg: running with PMTs! PROBLEM: cost & natural radioactivity of multi-ton detectors! Proposed design of XENON 1ton Possible design of the XENON 1 ton two-phase LXe DM TPC detector with ~ 121 QUPID vacuum photon detectors. Background: 1mBq/tube Expectation: < 1 WIMP interaction/Kg/Day Aprile/XENON WIMP interaction LXe e- THGEM/CsI GPM Primary scintillation EGEG ELEL Secondary scintillation Xe THGEM/CsI GPM UV-window Ne/CF4 ? RD51: Weizmann/Nantes/Coimbra THGEM-GPM (gas photomultiplier): Simple, flat (save LXe), robust Low-cost Can be made Radio-clean ? Lower thresholds ? QUPID HPD LXe Weizmann Inst.

Cryo-GPM with windows Cryo-GPM with windows 2-phase or liquid scintillators Best operation, confirmed at RT: Ne/CH 4 or Ne/CF 4 radiation LXe e- THGEM/CsI GPM EGEG Secondary scintillation Xe UV-window 10 6 GPM in noble-gas: gain affected by lack of impurities arXiv: arXiv: GPM w window: better control of counting gas / stability Higher gain & lower HV RT Weizmann Inst.

Double-THGEM/CsI at RT & CRYO-T Preliminary CRYO-T in “improvised“ setup at Weizmann Cryo-medium: LN 2 /ethanol Soon: studies at Nantes with LXe TPC Ne/5%CH 4 Preliminary results in Coimbra: at RT, similar 1-3 bar RT 185K 150K 10 5 Samuel Duval, Ran Budnik, Artur Coimbra & Marco Cortesi (WIS) Double-THGEM RT & CRYO-T May Effective Gain Weizmann Inst.

Cryo-THGEM : Future plan 1)Characterization and optimization of the small (3x3 cm 2 ) THGEM- based detector prototype in cryogenic conditions (LN 2 /ethanol; LXe) 2)Design and construction of a 100mm diameter GPM and tests in scintillation & double-phase detector modes (in double-phase: using XENON10 TPC) 3) R&D for design and production of radio-clean THGEM (Cirlex, Teflon, …) for Dark Matter 4) Characterization and optimization of THGEM-based pixilated GPM readout schemes. Weizmann Inst.

SUMMARY THGEM THGEM a versatile robust electron multiplier Good suitability for photon detection with Ne-mixtures -) Low voltage  Better stability, No demage induced by discharges -) High Gain, even with single THGEM  small detector thickness -) Larger dynamic range  Good stability in background enviroment Potential RT & low-T Sampling elements for Digital Hadron Calorimeters Cryogenic UV-photon detectors for medical imaging and dark matter UV-photon detectors for RICH Neutron-imaging detectors Large-area moderate-resolution tracking detectors Weizmann Inst.