SAGE III Aerosol Studies: Size Distribution Retrievals and Validation Mark Hervig GATS Inc.

Slides:



Advertisements
Similar presentations
Radar/lidar observations of boundary layer clouds
Advertisements

Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Mark Hervig, CAWSES Ice Layer Workshop, Kuehlungsborn, May 15, 2006 PMC Particle Size from 14 Years of HALOE Observations Mark Hervig GATS Inc.
Products from the OMPS Limb Profiler (LP) instrument on the Suomi NPP Satellite Pawan K. Bhartia Earth Sciences Division- Atmospheres NASA Goddard Space.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University.
3D Radiative Transfer in Cloudy Atmospheres: Diffusion Approximation and Monte Carlo Simulation for Thermal Emission K. N. Liou, Y. Chen, and Y. Gu Department.
Calibration Scenarios for PICASSO-CENA J. A. REAGAN, X. WANG, H. FANG University of Arizona, ECE Dept., Bldg. 104, Tucson, AZ MARY T. OSBORN SAIC,
SCILOV-10 Validation of SCIAMACHY limb operational NO 2 product F. Azam, K. Weigel, Ralf Bauer, A. Rozanov, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN,
1 An initial CALIPSO cloud climatology ISCCP Anniversary, July 2008, New York Dave Winker NASA LaRC.
SCILOV-10 Validation of SCIAMACHY limb operational BrO product F. Azam, K. Weigel, A. Rozanov, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati,
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Toward a more accurate estimate of global stratospheric aerosol surface area density. Is it important? T. Deshler, J. L. Mercer, M. Kovilakam, J. M. Rosen.
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Long-Term Ambient Noise Statistics in the Gulf of Mexico Mark A. Snyder & Peter A. Orlin Naval Oceanographic Office Stennis Space Center, MS Anthony I.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
Figure 2.10 IPCC Working Group I (2007) Clouds and Radiation Through a Soda Straw.
1 Mass Flux in a Horizontally Homogeneous Atmosphere A useful tool for emissions and lifetimes. Assume an atmosphere well- mixed in latitude and longitude;
Cloud Top Height Retrieval From MIPAS Jane Hurley, Anu Dudhia, Graham Ewen, Don Grainger Atmospheric, Oceanic and Planetary Physics, University of Oxford.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
Satellite Remote Sensing of Surface Air Quality
Reflected Solar Radiative Kernels And Applications Zhonghai Jin Constantine Loukachine Bruce Wielicki Xu Liu SSAI, Inc. / NASA Langley research Center.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
CHEM Science Team March 2000 Cloud processes near the tropopause HIRDLS will measure cloud top altitude and aerosol concentrations: the limb view gives.
LIDAR: Introduction to selected topics
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Application of Satellite Data to Particulate, Smoke and Dust Monitoring Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Data Handbook Chapter 4 & 5. Data A series of readings that represents a natural population parameter A series of readings that represents a natural population.
M= µm White light. 0.5 µm µm X=10 M=
Characterization of Arctic Mixed-Phase Cloudy Boundary Layers with the Adiabatic Assumption Paquita Zuidema*, Janet Intrieri, Sergey Matrosov, Matthew.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
AMFIC third progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Pat Arnott, ATMS 749, UNR, PRACTICAL CONSEQUENCES OF THE SCHWARZSCHILD EQUATION FOR RADIATION TRANSFER WHEN SCATTERING IS NEGLIGIBLE From Grant Petty’s.
1 GOES-R AWG Product Validation Tool Development Aviation Application Team – Volcanic Ash Mike Pavolonis (STAR)
1 GOES-R AWG Product Validation Tool Development Aviation Application Team – Volcanic Ash Mike Pavolonis (STAR)
CloudSat/VIIRS CBH Validation Activities at CIRA Curtis Seaman, Yoo-Jeong Noh, Steve Miller, Dan Lindsey 10 September 2012.
INTRODUCTORY STUDY : WATER INDICATORS AND STATISTICAL ANALYSIS OF THE HYDROLOGICAL DATA EAST OF GUADIANA RIVER by Nikolas Kotsovinos,P. Angelidis, V. Hrissanthou,
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
Retrieval of Methane Distributions from IASI
SOFIE Mark Hervig, CEDAR Meeting, 20 June GATS The Solar Occultation for Ice Experiment SOFIE Mark Hervig, SOFIE Deputy PI Larry Gordley, SOFIE.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Cloud optical properties: modeling and sensitivity study Ping Yang Texas A&M University May 28,2003 Madison, Wisconsin.
Ozone time series and trends Various groups compute trends in different ways. One goal of the workshop is to be able to compare time series and trends.
CLOUD PHYSICS LIDAR for GOES-R Matthew McGill / Goddard Space Flight Center April 8, 2015.
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Study Overview R.Siddans.
BASIC STATISTICAL CONCEPTS Statistical Moments & Probability Density Functions Ocean is not “stationary” “Stationary” - statistical properties remain constant.
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
3km 1.7 km 60 o 30 o With 1dg FOV, 3km from the cloud, the foot print perpendicular to the cloud will be about 50m. Cloud-Aerosol Scanner: Possible measurements.
Aerosol Characterization Using the SeaWiFS Sensor and Surface Data E. M. Robinson and R. B. Husar Washington University, St. Louis, MO
Polar Mesospheric Clouds (PMCs) and Water Vapor Mark Hervig GATS Inc., Driggs, Idaho.
Stratospheric Aerosol Size Distribution Retrievals Using SAGE III Mark Hervig GATS Inc. Terry Deshler University of Wyoming.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Impact of 3D Clouds on Aerosol Retrievals Guoyong Wen 1,2 Alexander Marshak 1 Robert F. Cahalan 1 Lorraine Remer 1 Richard Kleidman 1,3 1 NASA/Goddard.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
J. Redemann 1, B. Schmid 1, J.A. Eilers 2, R. Kahn 3, R.C. Levy 4,5, P.B. Russell 2, J.M. Livingston 6, P.V. Hobbs 7, W.L. Smith Jr. 8, B.N. Holben 4 1.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Card 2. Option to use “Aerosol Plus” a parameter that characterizes the user defined aerosols and optical properties.
Visible vicarious calibration using RTM
Challenges associated with ice and large particles in the TTL
LIDAR Ben Kravitz November 5, 2009.
DCC method implementation in FY3/MERSI and FY2
Central Tendency and Variability
“Brief” update on ACE water vapour
Presentation transcript:

SAGE III Aerosol Studies: Size Distribution Retrievals and Validation Mark Hervig GATS Inc.

Planned Investigations SAGE III Validation Studies: Addressing stratospheric aerosols and cirrus Comparisons with: HALOE, balloon-borne OPCs, and SAGE II Stratospheric Aerosol Size Distribution Retrievals

SAGE III Aerosol Validation Comparisons with HALOE HALOE measures aerosol extinction profiles at 4 IR wavelengths 2.45, 3.40, 3.46, and 5.26  m size distributions are retrieved from stratospheric measurements compare size distribution, surface area, etc… calculate extinction at SAGE wavelengths using the HALOE size distributions 224 coincidences during 6 months in 2002 (176 solar, 48 lunar)

Comparisons with balloon-borne optical particle counters (OPCs) OPCs measure size distribution profiles compare size distribution, surface area, etc… compute extinction at SAGE wavelengths using the OPC size distributions Terry Deshler collaborating (University of Wyoming)

Example comparison between SAGE III and OPC over Laramie 40  N, summer 2002 Profiles over Laramie Extinction spectra at 21 km altitude Normalized spectra, 21 km

Extinction profile comparisons SAGE II and HALOE 281 coincident measurements near 41  N, Average separations: 12.1 hours 0.8  latitude 8.0  longitude

Extinction time series comparisons SAGE II, HALOE, and OPCs Measurements over Laramie Non-coincident measurements within the same location

Surface area time series comparisons SAGE II and HALOE Over the equator Non-coincident measurements within the same location

SAGE III Cirrus Validation Compare SAGE III and HALOE cirrus measurements Using very close coincidences: Cloud presence (yes/no) Cloud altitude others? optical depth, effective radius, volume Statistical comparisons: occurrence frequency vs. space, time Example comparison of SAGE II and HALOE cloud top heights 9 coincidences, average separation: 3 minutes time and 61 km distance

SAGE III Aerosol Size Distribution Retrievals Retrieve aerosol size distributions from extinction at 8 (9) wavelengths Assume lognormal distributions, 3 parameters: total concentration, median radius, and distribution width Begin with single mode, possible bimode (6 parameters) Step 1: Find distribution shape (median radius and width) using extinction ratios Step 2: Find concentration by adjusting simulated extinction to measurement at one wavelength

Simulated SAGE III Size Distribution Retrievals volcanic aerosols background aerosols

Example retrieval using SAGE III measurements 21 km altitude, 40  N, summer 2002 SAGE III size distribution retrieval Comparison with OPC measurements

Summary SAGE III Validation: Stratospheric aerosol extinction, surface area, size distribution Cirrus altitude, occurrence frequency… Comparisons with HALOE, OPCs, SAGE II SAGE III Aerosol Size Distribution Retrievals: Infer lognormal size distributions for stratospheric aerosols Make results and software available on the web