The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul-20 2006 Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.

Slides:



Advertisements
Similar presentations
Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration LCWS04, Paris.
Advertisements

Recent news about SiPM based applications R&D in DESY Nicola D’Ascenzo University of Hamburg - DESY.
1 Construction of the hadronic calorimeter prototype for ILC (CALICE collaboration) or experience with Geiger mode operating multipixel photodiodes (SiPM)
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Study of Photon Sensors using the Laser System 05/7/12 Niigata University, Japan Sayaka Iba, Editha P. Jacosalem, Hiroaki Ono, Noriko.
Compton Electrons Dipangkar Dutta & Jeff Martin Mississippi State & University of Winnipeg.
MPPC R&D status Kobe Univ. CALICE collaboration meeting Yuji SUDO Univ. of Tsukuba ~ contents ~ Introduction Linearity curve Recovery time.
GLD Calorimeter Status Oct 学術創成会議 S. Uozumi Shinshu University FJPPL meeting held at the end of September. Preparation underway toward the ECAL.
Reports from DESY Satoru Uozumi (Staying at DESY during Nov 11 – 25) Nov-21 GLDCAL Japan-Korea meeting.
Calorimetry: a new design 2004/Sep/15 K. Kawagoe / Kobe-U.
CALICE Meeting DESY ITEP&MEPhI status report on tile production and R&D activities Michael Danilov ITEP.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
Update on Silicon Photomultipliers Yi Qiang (Hall-D) Jefferson Lab S&T Review May 10, 2011.
Detector development and physics studies in high energy physics experiments Shashikant Dugad Department of High Energy Physics Review, 3-9 Jan 2008.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
SiPM: Development and Applications
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
The Scintillator ECAL Beam Test at FNAL Adil Khan International Linear Collider Workshop 2010 LCWS10 & ILC10, Beijing, China CALICE Scintillator ECAL group.
The Scintillator ECAL Beam Test at FNAL K. Kotera, Shinshu-u, 1st October 2009 CALICE Scintillator ECAL group; Kobe University, Kyungpook University, the.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Future Beam Test Plans of the GLD Calorimeter Aug 学術創成会議 Satoru Uozumi (Shinshu) for the GLD calorimeter group We are planning to have two beam.
MPPC update including plastic connector T2K experiment collaboration meeting 2007/4/18 (Wed) S.Gomi T.Nakaya M.Yokoyama ( Kyoto University ) T.Nakadaira.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Study of the MPPC performance - R&D status for the GLD calorimeter readout – Nov 6-10.
Study of the Multi-Pixel Photon Counter for ILC calorimeter Satoru Uozumi (Kobe University) Atami Introduction of ILC and MPPC The MPPC performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
1 MPPC update S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira (KEK) Nov KEK.
Scintillator-based ILC detector R & D Status and Milestone DongHee Kim Kyungpook National University Joint Korea-Japan Collaboration KPS meeting, Spring.
Development and Study of the Multi Pixel Photon Counter
José Repond Argonne National Laboratory LCWS, Vancouver, Canada, July 19 – 22, 2006 Summary of Calorimeter and Particle ID sessions.
GLD-CAL and MPPC Based on talks by T. Takeshita and H. K. Kawagoe / Kobe-U 2005-Sep-16 MPPC
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) Feb Beijing Introduction Basic performances Future.
R&D status of the Scintillator- strip based ECAL for the ILD Oct LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration Scintillator strips.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Performance of SiPM Ryuhei Nakamura (Kobe Univ.) GLC calorimeter group (KEK, Kobe, Konan, Niigata, Shinshu, Tsukuba) Contents ・ Introduction ・ Test results.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
Development of Multi-Pixel Photon Counters and readout electronics Makoto Taguchi High Energy Group.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
R&D of Calorimeter using Strip/Block Scintillators with SiPM
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Performance of new MPPC Nov. 21 Korea-Japan joint meeting Takashi Maeda Hideki Yamazaki Yuji Sudo (University of Tsukuba) --- Contents ---
Beta-ray test for strip scintillator readout MPPC GLD Cal group KEK 06/2/28 (Tue) Niigata university Sayaka IBA.
Performance of Scintillator-Strip Electromagnetic Calorimeter for the ILC experiment Satoru Uozumi (Kobe University) for the CALICE collaboration Mar 12.
Jet Energy Measurement at ILC Separation of jet particles in the calorimeter is required for the PFA  Fine granular calorimeter is necessary. Particle.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Future Beam Test Plans of the Calorimeter Group Aug 学術創成会議 Satoru Uozumi (Shinshu) for the GLD calorimeter group We are planning to have two beam.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Scintillator-ECAL Beam Test Scintillator-strip ECAL Beam DESY My task and achievement at DESY Contents Satoru Uozumi Shinshu University, Japan Nov-23.
Development of Multi-Pixel Photon Counters (1)
Scintillation Detectors in High Energy Physics
ScECAL+AHCAL+TCMT Combined Beam FNAL
ITEP&MEPhI status report on tile production and R&D activities
R&D of MPPC in kyoto M.taguchi.
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter group

Sampling calorimeter with Pb/W - scintillator sandwich structure with WLSF readout Particle Flow Algorithm (PFA) needs particle separation in the calorimeter Fine granularity with strip/tile scintillator Huge number of readout channels –~10M (ECAL) + 4M (HCAL) ! –10k for muon detector Used inside 3 Tesla solenoid Need new photon sensor which is compact and low-cost, but has enough performance. The GLD Calorimeter

~ 1 mm 20~100  m Depletion region ~ 2  m ~ 8  m Substrate 1600 pixels 400 pixels substrate p + p-p- Guard ring n - Al conductor p+p+ n+n+ Si Resistor V bias The Multi-Pixel Photon Counter … named by Hamamatsu (Silicon Photomultiplier … general name) is a novel type semiconductor photon sensor

PMTMPPC Gain~ ~10 6 Photon Detection Efficiency 0.1 ~ ~ 0.4 Responsefast Photon countingYesGreat Bias voltage~ 1000 V30 ~ 70 V SizeSmallCompact B fieldSensitiveNo influence CostNot lowLow ($1~10?) Dynamic rangeGoodNot so good StabilityGoodUnknown, maybe good Noise (fake signal by thermions) QuietNoisy (order of MHz) The MPPC performance The MPPC looks feasible for the GLD Calorimeter readout!

Required performance for the GLD Calorimeter Gain: ~ Best to have 10 6, at least 10 5 Dynamic range: can measure ~1000 p.e. – satisfactory to measure EM shower maximum – need > 2500 pixels Photon Detection Efficiency ~ 30 % – to distinguish MIP signal Noise rate : ~ 1 MHz (threshold = 0.5 p.e., threshold =1.5 p.e is also acceptable) good uniformity, small cross-talk Timing Resolution ~ 1 nsec – Necessary for bunch ID, slow neutron separation Sensor area: 1.5 x 1.5 mm – suitable for 1.5 mm  fiber Should be stable against bias voltage / temperature / time

The MPPC performance looks feasible for the GLD calorimeter readout, but still not sufficient. Need study and improvement of the fundamental property to achieve our goal. Now we are measuring performance of 400 / 1600 pixel MPPC prototypes provided by Hamamatsu. Based on its results, we provide feedback to Hamamatsu to have improved sample. R&D GLD Calorimeter Evaluate performance of the MPPC prototypes Provide feedback to HPK Improved samples from HPK

Current Results of the Performance Study

C = 0.13 ± 0.01 pF V 0 = ± 0.01 V C = 0.02 ± 0.01 pF V 0 = ± 0.02 V Gain vs Bias Voltage 400 pixel x pixel 400 pixel with x63 amp Green LED MPPC –C … Pixel capacity –V 0 … Geiger-mode starting voltage Typically 5-12 x 10 5 (400 pixel), x 10 5 (1600 pixel) Need precise control of V bias to have stable gain Pedestal 1 p.e signal

Count rate of noises above threshold (>0.5 / 1.5 photoelectrons) ● -20 ℃ ● -10 ℃ ● 0 ℃ ● 10 ℃ ● 20 ℃ threshold=0.5pethr=1.5pe 1 MHz 2 MHz Noise Rate (1600 pixel)

Laser Bench Test MPPC YAG Laser ( = 532  m) with microscope Pulse width ~ 2 nsec Laser spot size ~ 1  m Moving stage pos. resolution ~ 0.02  m Can perform precise pinpoint scan with the well-focused laser Laser Spot (before light reduction) 25  m 1600 pixel

Scan within a pixel - Detection Efficiency - Num. of >= 1 pix. fired events Num. of all events Geometrical acceptance within a pixel ~ 20 % Variation within an active region ~ 7-13% x-point (2  m pitch) One pixel ・ -71.0V ・ -70.0V ・ -69.5V 1600 pixel Preliminary V bias = 70 V

Shows inverted-U shape Variation ~ 2-3 % Scan within a pixel - Gain - y-point (1  m pitch) x-point (1  m pitch) 1600 pixel Preliminary Active area only

More Laser Results? Cross-talk All-pixel scan

Summary & Plans MPPC is a great device, and feasible for the GLD calorimeter readout. Extensive R&D is ongoing collaborating with the Hamamatsu Photonics. We still have lots of things to do in a short term: –Need more study of fundamental properties (Photon Detection Efficiency, Linearity, etc) –Stability, Robustness, B-field tolerance –Time resolution –Device-by-device variation Current target is a beam test of EM calorimeter module with the full MPPC readout (next talk).

Backups

PMT * MCP- PMT * HPD * APD * MPPC (SiPM) HV1kV 8kV+300V300V50V Gain Noize<10Hz ??Very Sensitive 1MHz B FiledNAOK Price/chan nel $25$60---$30$10 QE15%8% 70%10~20% R&DNomarginalnecessaryMarginalnecessary (*) Multi-pixels

Setup

 -ray test (in 2005) Scintilltor (10x40x2mm) Practical test with Scintillator & WLSF Compare performance with PMT Device # of p.e. detected # of photons from fiber MPPC (100 pix) 6.1±0.7 (pixels) 28±10 PMT5.8±0.5 (p.e.) 29±6 (1mm  MPPC performance is comparable with PMT for the practical use. Co 60  - ray MPPC or PMT Preliminary result