FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Optical simulations within and beyond the paraxial limit 1 Daniel Brown, Charlotte Bond and Andreas Freise University of Birmingham.
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Physics EAL 501 Lecture 6 Power & Frequency.
Marcus Ng Mentor: Alan Weinstein Co-mentor: Robert Ward
Gaussian Beam Propagation Code
Optics of GW detectors Jo van den Brand
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
Fiber-Optic Communications James N. Downing. Chapter 10 Fiber-Optic Test and Measurement.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Louis J. Rubbo Neil Cornish and Olivier Poujade. The LISA Simulator Capabilities –Valid for an arbitrary gravitational wave at any frequency in the LISA.
Higher order TEM modes: Why and How? Andreas Freise European Gravitational Observatory 17. March 2004.
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Higher order laser modes in gravitational wave detectors
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Computational Physics Approaches to Model Solid-State Laser Resonators Konrad Altmann LAS-CAD GmbH, Germany LASer Cavity Analysis & Design.
1 Polarisation effects in 4 mirrors cavities Introduction Polarisation eigenmodes calculation Numerical illustrations F. Zomer LAL/Orsay Posipol 2008 Hiroshima.
Towards dual recycling with the aid of time and frequency domain simulations M. Malec for the GEO 600 team Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut.
Modeling beam and mirror distortions using modal models: FINESSE V.1 Charlotte Bond, Daniel Brown and Andreas Freise Tokyo Institute of Technology 21/06/2013.
Stefan Hild 1ILIAS WG1 meeting, Cascina, November 2006 Comparison of tuned and detuned Signal-Recycling Stefan Hild for the GEO-team.
Andreas Freise ILIAS WG1 Meeting CERN (29-Mar-07) GEO 600 Simulation Group.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
Finesse Update + Noise Propagation-Simulation Tutorial AEI, Hannover Andreas Freise University of Birmingham.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Advanced VIRGO WG1: Status VIRGO, Cascina Andreas Freise University of Birmingham.
1 Experiences and lessons learned from interferometer simulations at GEO GWADW, Andreas Freise for Hartmut Grote, Holger Wittel and the rest.
European Gravitational Observatory12/12/2005 WG1 Hannover 1 Mode Matching of the Fabry-Perrot cavities Julien Marque.
Modulation techniques for length sensing and control of advanced optical topologies B.W. Barr, S.H. Huttner, J.R. Taylor, B. Sorazu, M.V. Plissi and K.A.
04. November 2004 A. Freise A. Freise, M. Loupias Collaboration Meeting November 04, 2004 Alignment Status.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
Matt Evans, LSC March 2003 (G E)1 Lock Acquisition in LIGO  Who am I? »Matt Evans »Caltech graduate  What is Lock Acquisition? »The process.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Scatter Shifter. Motivation/ goals  Getting rid of scattered light reflected back into the interferometer from auxilliary ports  Have a versatile device.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
A. Freise FINESSE + FINESSE + future plans and work in progress Andreas Freise 22nd July 2006.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
Advanced LIGO Simulation, 6/1/06 Elba G E 1 ✦ LIGO I experience ✦ FP cavity : LIGO I vs AdvLIGO ✦ Simulation tools ✦ Time domain model Advanced.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Nonlinear Optics Lab. Hanyang Univ. Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index - Optical phase conjugation - Self-focusing.
First DR FFT Results on Advanced LIGO Using Perfect and Imperfect Optics By Ken Ganezer, George Jennings, and Sam Wiley CSUDH LIGO-G Z by Ken.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Modelling and Simulation of Passive Optical Devices João Geraldo P. T. dos Reis and Henrique J. A. da Silva Introduction Integrated Optics is a field of.
A. Freise1 Phase and alignment noise in grating interferometers Andreas Freise QND Meeting, Hannover
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
The VIRGO detection system
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Calibration and the status of the photon calibrators Evan Goetz University of Michigan with Peter Kalmus (Columbia U.) & Rick Savage (LHO) 17 October 2006.
GEO600 – The output mode cleaner Mirko Prijatelj for the GEO600-Team Institute for Gravitational Physics Albert-Einstein-Institute Hannover / Germany.
Interferometer configurations for Gravitational Wave Detectors
GEO 600 Simulation Workshop
Homodyne readout of an interferometer with Signal Recycling
Modeling of Advanced LIGO with Melody
Advanced Virgo Finesse Input File
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
Alignment Simulation Tool
LIGO Scientific Collaboration
Some features of NV. Vincent Loriette.
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004

5. September 2003 Andreas Freise

light power, field amplitudes eigenmodes, beam shape error/control signals (modulation-demodulation) transfer functions, sensitivities, noise couplings alignment error signals, mode matching, etc. Possible Outputs of FINESSE

5. September 2003 Andreas Freise Plane Waves – Frequency Domain Coupling of light fields: Set of linear equations: solved numerically

5. September 2003 Andreas Freise Frequency Domain Simple cavity: two mirrors + one space (4 nodes) Light source (laser) Output signal (detector)

5. September 2003 Andreas Freise Frequency Domain one Fourier frequency one complex output signal

5. September 2003 Andreas Freise Static response phase modulation = sidebands 3 fields, 3 beat signals

5. September 2003 Andreas Freise Frequency Response infenitesimal phase modulation 9 frequencies, 13 beat signals

5. September 2003 Andreas Freise Gaussian Beam Parameters Compute cavity eigenmodes start node Trace beam and set beam parameters

5. September 2003 Andreas Freise Mode Mismatch and Misalignment Mode mismatch or misalignemt can be described as light scattering in higher-order spatial modes. Coupling coefficiants for the interferometer matrix are derived by projecting beam 1 on beam 2:

5. September 2003 Andreas Freise FINESSE: Fast and (fairly) well tested TEM order Omatrix elements(effective) computation time (100 data points) 0~ <1 sec 5~ sec Example: Optical layout of GEO 600 (80 nodes) The Hermite-Gauss analysis has been validated by: computing mode-cleaner autoalignment error signals (G. Heinzel) comparing it to OptoCad (program for tracing Gaussian beams by R. Schilling) comparing it to FFT propagation simulations (R. Schilling)

5. September 2003 Andreas Freise Power Recycling Signals

5. September 2003 Andreas Freise FINESSE /virgo/VCS/1.0/VIRGOSW/Finesse/v0r93/... Windows, Linux Linux, AIX

5. September 2003 Andreas Freise

Using Par-Axial Modes Hermite-Gauss modes allow to analyse the optical system with respect to alignment and beam shape. Both misalignment and mismatch of beam shapes (mode mismatch) can be described as scattering of light into higher- order spatial modes. This means that the spatial modes are coupled where an optical component is misaligned and where the beam sizes are not matched.

5. September 2003 Andreas Freise From Plane Waves to Par-Axial Modes The electric field is described as a sum of the frequency components and Hermite-Gauss modes: Example: lowest-order Hermite-Gauss: Gaussian beam parameter q

5. September 2003 Andreas Freise Gaussian Beam Parameters Example: normal incidence transmission through a curved surface: Transforming Gaussian beam parameters by optical elements with ABCD matrices:

5. September 2003 Andreas Freise Frequency Noise Coupling Coupling of a frequency calibration peak into the dark fringe output: Difference between results for TEM 00 only and those with higher-order TEM modes: factor  100 phase  90°

5. September 2003 Andreas Freise Mode Healing T MSR

5. September 2003 Andreas Freise Mode Healing power recycling only: Each recycling cavity minimises the loss due to mode mismatch of the respective other with signal recycling:

5. September 2003 Andreas Freise Error signals, control signals photo detectors, multiple mixers Transfer functions amplitude-, phase- and frequency modulations Shot-noise-limited sensitivities Typical Tasks For FINESSE

5. September 2003 Andreas Freise FINESSE: Versatile simulation software for user-defined interferometer topologies. Fast, easy to use. Higher-order spatial modes: Commissioning of interferometers with high- finesse cavities requires to understand the influences of mode-matching and alignment on control signals and noise couplings.