Rates of Change and Tangent Lines Devil’s Tower, Wyoming.

Slides:



Advertisements
Similar presentations
2.7 Tangents, Velocities, & Rates of Change
Advertisements

2.4 Rates of Change and Tangent Lines Devils Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
The Derivative.
Sec 3.1: Tangents and the Derivative at a Point
2.1 Derivatives and Rates of Change. The slope of a line is given by: The slope of the tangent to f(x)=x 2 at (1,1) can be approximated by the slope of.
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
2.4 Rates of Change and Tangent Lines. What you’ll learn about Average Rates of Change Tangent to a Curve Slope of a Curve Normal to a Curve Speed Revisited.
Warmup describe the interval(s) on which the function is continuous
Copyright © 2011 Pearson Education, Inc. Slide Tangent Lines and Derivatives A tangent line just touches a curve at a single point, without.
Tangent lines Recall: tangent line is the limit of secant line The tangent line to the curve y=f(x) at the point P(a,f(a)) is the line through P with slope.
DERIVATIVES 3. DERIVATIVES In this chapter, we begin our study of differential calculus.  This is concerned with how one quantity changes in relation.
Rate of change and tangent lines
Rates of Change and Tangent Lines
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
2.4 RATES OF CHANGE & TANGENT LINES. Average Rate of Change  The average rate of change of a quantity over a period of time is the slope on that interval.
The Derivative Chapter 3:. What is a derivative? A mathematical tool for studying the rate at which one quantity changes relative to another.
Derivatives - Equation of the Tangent Line Now that we can find the slope of the tangent line of a function at a given point, we need to find the equation.
Business Calculus Rates of Change Types of Change  Average rate of change: the average rate of change of y with respect to x is a ratio of.
THE DERIVATIVE AND THE TANGENT LINE PROBLEM
Rates of Change and Tangent Lines Section 2.4. Average Rates of Change The average rate of change of a quantity over a period of time is the amount of.
1.4 – Differentiation Using Limits of Difference Quotients
Implicit Differentiation. Objectives Students will be able to Calculate derivative of function defined implicitly. Determine the slope of the tangent.
2.4 Rates of Change and Tangent Lines
2.1 The Derivative and the Tangent Line Problem
1 Discuss with your group. 2.1 Limit definition of the Derivative and Differentiability 2015 Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland,
Differentiability and Rates of Change. To be differentiable, a function must be continuous and smooth. Derivatives will fail to exist at: cornercusp vertical.
Implicit Differentiation 3.6. Implicit Differentiation So far, all the equations and functions we looked at were all stated explicitly in terms of one.
1.6 – Tangent Lines and Slopes Slope of Secant Line Slope of Tangent Line Equation of Tangent Line Equation of Normal Line Slope of Tangent =
2.4 Rates of Change and Tangent Lines Calculus. Finding average rate of change.
GOAL: USE DEFINITION OF DERIVATIVE TO FIND SLOPE, RATE OF CHANGE, INSTANTANEOUS VELOCITY AT A POINT. 3.1 Definition of Derivative.
Chapter 3.1 Tangents and the Derivative at a Point.
11-2 Key to evens 2a) -5 2b) -3 2c) 0 4a) 0 4b) 1 4c) -2 6) -1/10 8) -5 10) 27 12) - 7/14 14) 1/8 16) 1/16 18) 0 20) 1/4 22) -1/6 24) 4 26) -1/4 28) 1.
§3.2 – The Derivative Function October 2, 2015.
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Warm Up Determine a) ∞ b) 0 c) ½ d) 3/10 e) – Rates of Change and Tangent Lines.
The Derivative Calculus. At last. (c. 5). POD Review each other’s answers for c. 4: 23, 25, and 27.
OBJECTIVES: To introduce the ideas of average and instantaneous rates of change, and show that they are closely related to the slope of a curve at a point.
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming.
§3.1 – Tangent Lines, Velocity, Rate of Change October 1, 2015.
Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Section 2.4 Rates of Change and Tangent Lines Calculus.
2.1 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
1 10 X 8/30/10 8/ XX X 3 Warm up p.45 #1, 3, 50 p.45 #1, 3, 50.
Ch. 2 – Limits and Continuity 2.4 – Rates of Change and Tangent Lines.
Chapter 14 Sections D - E Devil’s Tower, Wyoming.
Ch. 2 – Limits and Continuity
2.4 Rates of Change and Tangent Lines
Rates of Change and Tangent Lines
Warm Up a) What is the average rate of change from x = -2 to x = 2? b) What is the average rate of change over the interval [1, 4]? c) Approximate y’(2).
2-4 Rates of change & tangent lines
2.1 Tangents & Velocities.
2.7 and 2.8 Derivatives Great Sand Dunes National Monument, Colorado
Pg 869 #1, 5, 9, 12, 13, 15, 16, 18, 20, 21, 23, 25, 30, 32, 34, 35, 37, 40, Tangent to a Curve.
2.1A Tangent Lines & Derivatives
2.7 Derivatives and Rates of Change
Sec 2.7: Derivative and Rates of Change
Definition of the Derivative
Lesson 2-4: Rates of Change
Derivatives by Definition
THE DERIVATIVE AND THE TANGENT LINE PROBLEM
Rates of Change and Tangent Lines
The Tangent and Velocity Problems
2.1 Limits, Rates of Change, and Tangent Lines
2.4 Rates of Change and Tangent Lines
2.7/2.8 Tangent Lines & Derivatives
Tangent Line Recall from geometry
2.4 Rates of Change and Tangent Lines
30 – Instantaneous Rate of Change No Calculator
Sec 2.7: Derivative and Rates of Change
2.4 The Derivative.
Presentation transcript:

Rates of Change and Tangent Lines Devil’s Tower, Wyoming

The slope of a line is given by: The slope at (1,1) can be approximated by the slope of the secant through (4,16). We could get a better approximation if we move the point closer to (1,1). ie: (3,9) Even better would be the point (2,4).

The slope of a line is given by: If we got really close to (1,1), say (1.1,1.21), the approximation would get better still How far can we go?

slope slope at The slope of the curve at the point is:

is called the difference quotient of f at a. If you are asked to find the slope using the definition or using the difference quotient, this is the technique you will use.

In the previous example, the tangent line could be found using. The normal line can be found the same way, except by using the opposite reciprocal of the slope. The normal line is perpendicular to the tangent line. The slope of a curve at a point is the same as the slope of the tangent line at that point.

Example 4: a Find the slope at. Let

Example 4: Note: The general derivative can only be found on a CAS calculator. Also, if it says “Find the limit” on a test, you must show your work! On the calculator:

Example 4: b Where is the slope ? Let

Example 4: c What are the tangent line equations when and ?

Review: average slope: slope at a point: average velocity: instantaneous velocity: If is the position function: These are often mixed up. Be Careful! So are these! velocity = slope 