4th International Summer School « Nuclear Physics Methods and Accelerators in Biology and Medicine » Monte-Carlo simulations : FLUKA vs. MCNPX Maxime ODEN.

Slides:



Advertisements
Similar presentations
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Advertisements

EAR2 simulation update Collaboration board meeting Christina Weiss & Vasilis Vlachoudis.
Nuclear Physics Institute Detection of relativistic neutrons by BaF2 scintillators Simulation on MCNPX Doctor V. Wagner Mitja Majerle Antonin Krasa Ondrej.
Yoro TALL Santiago de Compostela (Spain) June 7 – 10, Second IP EUROTRANS Internal Training Course on Nuclear Data for Transmutation: status, needs.
Experimental Determination of Neutron Cross Sections of Yttrium by Activation Method by Barbara Geier Supervisors: Assoc. Prof Dr. Wolfgang Sprengel RNDr.
Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments Sergei Striganov Fermilab Workshop.
Neutron energy spectrum from U and Th traces in the Modane rock simulated with SOURCES (full line). The fission contribution is also shown (dashed line).
Summary of activities of the WG on Cosmogenic activation in JRA2/IDEA (during first 18 months) Susana Cebrián Web.
Joint IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies Student’s presentation Calculation of correction factors for neutron.
Measurements of cross-sections of neutron threshold reactions and their usage in high energy neutron measurements Ondřej Svoboda Nuclear Physics Institute,
Studies of ADS by means of JINR Nuclotron Martin Suchopár Nuclear Physics Institute, Academy of Sciences of the Czech Republic Department of Nuclear Reactors,
Page 1 Cross-sections of Neutron Threshold Reactions studied by activation method Anne Larédo Supervisor: Dr. Vladimír Wagner Nuclear Physics Institute,
Convolution of the neutron spectra with cross-sections We record the neutrons that cross a plane of interest - SSW (Surface Source Write) card. We classify.
History: The experiments with simplified ADS setups were performed on accelerators at the JINR (Joint Institute for Nuclear Research, Dubna, Russia). The.
Cross-section studies of important neutron and relativistic deuteron reactions Vladimír Wagner Nuclear physics institute of CAS, Řež, Czech Republic,
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Preliminarily results of Monte Carlo study of neutron beam production at iThemba LABS University of the western cape and iThemba LABS Energy Postgraduate.
Monte Carlo Study to determine the Neutron Fluence spectrum for a water Phantom: Preliminary Results University of the Western Cape Energy Postgraduate.
Vladimír Wagner Nuclear physics institute of CAS, Řež, Czech Republic, E_mail: for collaboration “Energy plus transmutation RAW”
Future usage of quasi-infinite depleted uranium target (BURAN) for benchmark studies Pavel Tichý Future usage of quasi-infinite depleted uranium target.
1 Dr. Sandro Sandri (President of Italian Association of Radiation Protection, AIRP) Head, Radiation Protection Laboratory, IRP FUAC Frascati ENEA – Radiation.
Simulations of Accelerator Driven Systems (ADS) Aleksander Polanski Joint Institute for Nuclear Research, Dubna, Russia. The Andrzej Soltan Institute for.
European Physical Society 19 th Nuclear Physics Divisional Conference New Trends in Nuclear Physics Applications and Technology Pavia (Italy) September.
Summer Practice in JINR Mathematical modeling of high-energy particle beams in accelerators.
Studies of neutron cross-sections by activation method in Nuclear Physics Institute Řež and in The Svedberg Laboratory Uppsala and experimental determination.
Experimental studies of spatial distribution of neutron production around thick lead target irradiated by 0.9 GeV protons Antonín Krása&Vladimír Wagner.
Studies of Deuteron and Neutron Cross-sections Important for ADS Research Vladimír Wagner Nuclear physics institute of CAS, Řež, Czech Republic,
Simulations on “Energy plus Transmutation” setup, 1.5 GeV Mitja Majerle
Monte Carlo methods in ADS experiments Study for state exam 2008 Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
Systematic studies of neutrons produced in the Pb/U assembly irradiated by relativistic protons and deuterons. Vladimír Wagner Nuclear physics institute.
Cross-sections of Neutron Threshold Reactions Studied by Activation Method Nuclear Physics Institute, Academy of Sciences of Czech Republic Department.
Neutron production study with the thick lead target and uranium blanket irradiated by 1.5 GeV protons Filip Křížek, ÚJF AV ČR.
Studies of Helium proportional counters response on fast neutrons, at NCSR “Demokritos” M. Zamani, M. Manolopoulou, S. Stoulos, M. Fragopoulou School of.
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical.
Mitja Majerle for the “Energy Plus Transmutation” collaboration.
M. Štefánik *), P. Bém, M. Honusek, K. Katovský, M. Majerle, J. Novák, and E. Šimečková AER Working Group F – „Spent Fuel Transmutation“ and INPRO IAEA.
ANITA workshop, Uppsala, december 2008 ANITA neutron source Monte Carlo simulations and comparison with experimental data Mitja Majerle Nuclear Physics.
Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical.
Neutron production in Pb/U assembly irradiated by deuterons at 1.6 and 2.52 GeV Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech.
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
Pion-Induced Fission- A Review Zafar Yasin Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad, Pakistan.
Simulations on “Energy plus Transmutation” setup, 1.5 GeV Mitja Majerle, V Wagner, A Krása, F Křížek This document can be downloaded.
Neutron production in Pb/U assembly irradiated by 1.26 AGeV deuterons. First experimental results Ondřej Svoboda Neutron production in Pb/U assembly irradiated.
9 th session of the AER Working Group “f “ - Spent Fuel Transmutations Simulations of experimental “ADS” Mitja Majerle, Gael de Cargouet Nuclear Physics.
7 th session of the AER Working Group “f “ - Spent Fuel Transmutations Simulations of experimental “ADT systems” Mitja Majerle Nuclear Physics Institute.
Neutron production and iodide transmutation studies using intensive beam of Dubna Phasotron Mitja Majerle Nuclear Physics Institute of CAS Řež, Czech republic.
N_TOF EAR-1 Simulations The “γ-flash” A. Tsinganis (CERN/NTUA), C. Guerrero (CERN), V. Vlachoudis (CERN) n_TOF Annual Collaboration Meeting Lisbon, December.
Three years of cross-section measurements of (n,xn) threshold reactions at TSL Uppsala and NPI Řež O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová,
Ali Ahmad FLUKA code validation of nuclear data required for the spallation target design in Accelerator Driven Subcritical Reactors ThorEA Meeting – Daresbury.
Comparison of neutron production on lead-uranium setup irradiated by protons and deuterons with different energies Ondřej Svoboda Nuclear Physics Institute,
Transmutation of 129 I with high energy neutrons produced in spallation reactions induced by protons in massive target V.HENZL Nuclear Physics Institute.
Studies of (n,xn) reaction cross-sections and also cross-sections of relativistic deuteron reactions obtained by the activation method Vladimír Wagner.
Monte Carlo methods in spallation experiments Defense of the phD thesis Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
Validation of Geant4 against the TARC benchmark: Testing neutron production, transportation and interaction TARC – experimental set-up and aims Geant4.
Induced-activity experiment:
Inter-comparison of Particle production (2)
Cross-section Measurements of (n,xn) Threshold Reactions
Transmutation of 129I with high energy neutrons produced in spallation reactions induced by protons in massive target V. HENZL1,*, D. HENZLOVA1, A. KUGLER1,
for collaboration “Energy plus transmutation”
Mitja Majerle NPI CAS Řež, The Czech Republic
JOINT INSTITUTE FOR NUCLEAR RESEARCH
The experiment on JINR Dubna Nuclotron
Mitja Majerle NPI CAS Řež, Czech Republic
Nuclear Physics Institute, Academy of Sciences of the Czech Republic
Seminární soustředění společného doktorského projektu UTEF ČVUT Praha a ÚJF AVČR Řež Transmutation studies on JINR Dubna Phasotron Mitja Majerle.
Performed experiments Nuclotron – set up ENERGY PLUS TRANSMUTATION
Neutron production in Pb/U assembly irradiated by p+, d+ at 0. 7 – 2
LAHET code simulations in comparison with bare Pb spallation target experiment Daniela Henzlova.
O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová, V. Wagner
Presentation transcript:

4th International Summer School « Nuclear Physics Methods and Accelerators in Biology and Medicine » Monte-Carlo simulations : FLUKA vs. MCNPX Maxime ODEN – École des Mines de Nantes (France) Spectroscopy dpt., Nuclear Physics Institute of ASCR Antonín Krása, Mitja Majerle, Ondřej Svoboda, Vladimír Wagner Energy plus Transmutation for the Energy plus Transmutation collaboration

Introduction  Experiments are carried out at JINR to study spallation p + Pb => spallation reaction  Detection of neutron with to activation detectors (Au, Al, Bi).  Activation foils activities are measured thanks to a germanium detector. Maxime ODEN - École des Mines de Nantes - Nuclear Physics Institute of ASCR

Phasotron experiment - bare Pb target Lead target Beam : proton 660 MeV

Energy plus Transmutation Set-up Maxime ODEN - École des Mines de Nantes - Nuclear Physics Institute of ASCR target: Pb (28.66 kg) blanket: U (206.4 kg) shielding: Cd + (CH 2 ) n Beam : proton 0.7/1/ 1.5 /2 GeV deuteron 1.6 / 2.52 GeV

Energy plus Transmutation Set-up

MCNPX Simulation  The obtained experimental data are used to check prediction from MCNPX (a computer simulation code based on Monte Carlo method)  MCNPX can calculate neutrons fluence where the detectors are set up  Neutron fluence multiplied by cross-sections for activation reaction give simulated activation results  Results compared to experimental results show discrepancies at higher energies (1.5 GeV and 2 GeV)

MCNPX Simulation  Ratio between experiment and MCNPX simulation results :

FLUKA Simulation  Verify experiments with FLUKA code: Spectrum in phasotron experiment Reaction rate in radial detectors  Two ways to calculate activation results: Multiplication with cross-sections RESNUCLEi function

FLUKA Simulation  neutrons fluence  Phasotron experiment with proton beam (660MeV) MCNPX FLUKA

FLUKA Simulation Energy plus Transmutation Front view Side view Radial detectors (gold foils)

FLUKA Simulation  Ratio between experiment and FLUKA simulation results (manual mutliplication): ratio Radial distance (cm)

FLUKA Simulation II  Ratio between experiment and FLUKA simulation results with RESNUCLEi scoring card: ratio Radial distance (cm)

Conclusion  FLUKA results checked by comparison with MNCPX  FLUKA and MCNPX are expected to give similar results Maxime ODEN - École des Mines de Nantes - Nuclear Physics Institute of ASCR Thank you for your attention