 -  and CH-  interactions in the molecular nitrogen- and methane-pyridine complexes Department of Chemistry University of Alberta.

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Yuichiro Nakayama, Yoshiyuki Matsuda, and Asuka Fujii
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
Infrared spectra of complexes containing acetylene-d2 Clément Lauzin, J. Norooz Oliaee, N. Moazzen-Ahmadi Department of Physics and Astronomy University.
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Via a low energy barrier, the dominant product will be determined by the activation barrier to form each product. 1 The benzene oxide/oxepin system plays.
Daniel P. Zaleski, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Evidence.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Galen Sedo, Jamie Doran, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Study of the HNO 3 -(H 2 O) 3 Tetramer.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU RC10 Gas phase measurements and calculations of HCl and Ferrocene Adam Daly and Stephen Kukolich Chemistry Department University of Arizona.
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Infrared spectroscopy of two isomers of the OCS-CS 2 complex J. Norooz Oliaee, M. Dehghany, Mahin Afshari, N. Moazzen-Ahmadi Department of Physics and.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Pradeep R. Varadwaj*, Arpita Varadwaj, Gilles H. Peslherbe A Computational Investigation of c-C 3 H 2  HX (X = F, Cl, Br) H-bonded Complexes Department.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Spectroscopic and Theoretical Determination of Accurate CH/  Interaction Energies in Benzene-Hydrocarbon Clusters Asuka Fujii, Hiromasa Hayashi, Jae Woo.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Biman Bandyopadhyay, Prasenjit Pandey, Amit K. Samanta, Anamika Mukhopadhyay, Tapas Chakraborty Association Complexes of 1,3-Cyclohexanedione: Probing.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Aimee Bell, Omar Mahassneh, James Singer,
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Aaron M. Pejlovas and Dr. Stephen G. Kukolich
The Conformational Landscape of Serinol
Methylindoles – Microwave Spectroscopy
Aaron M. Pejlovas, Onur Oncer, and Dr. Stephen G. Kukolich
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

 -  and CH-  interactions in the molecular nitrogen- and methane-pyridine complexes Department of Chemistry University of Alberta

Valuable prototypes for the  -  and CH-  interactions found in many reactive systems.  Supramolecular structures  DNA  -  stacking and assembly  CH-  attraction in asymmetric hydrogenation reactions MOTIVATION

a T. Steiner and G. R. Desiraju Chem. Commun. 8, 891 (1998). b The CH/pi Interaction, by M. Nishio, M. Hirota, and Y. Umezawa (1998). c M. Yamakawa, I. Yamada, R. Noyori, Angew. Chem. Int. Ed., 40, 15,2818 (2001). What is CH-  interaction? A weak noncovalent bond occurring between soft acids and soft bases. But is it a non-conventional weak hydrogen bond? a Is it more like ‘hydrogen bond’ C-H    O? b Fig.1 c Fig.2

Hydrogen bonds diagram: G. R. Desiraju, Acc. Chem. Res., 35, , (2002). a MATI: K. Shibasaki, A. Fujii, N. Mikami, and S. Tsuzuki, J. Phys. Chem. A 110, 4397 (2006). WEAKLY BOUND N 2 -C 5 H 5 N  1.3 Kcal/mol a CH 4 -C 6 H 6  1.1(1) Kcal/mol Dispersion interaction

What are we doing? 15 N 2 - C 5 H 5 NCH 4 - C 5 H 5 N Answers to questions. 1. How do N 2, CH 4 interact with a polar aromatic nitrogen heterocycle? 2. What is the vdW bond distance? -not well measured for CH 4 -C 6 H 6 FTMW

MW EXPERIMENTAL RESULTS 15 N 2 - C 5 H 5 N

The spectrum of 15 N 2 -C 5 H 5 N. Sample: 0.5% pyridine + 2.5% 15 N atm. Ne

A 1 (  = 0, I = 0) stateB 2 (  = 1, I = 1) state MP2/6-311G(d,p) A/MHz (31) (36) B/MHz (22) (34) C/MHz (22) (30)  aa /MHz4.9192(23)4.9290(36) 0.25(  bb -  cc ) /MHz (83)1.5393(11) DJDJ /kHz4.1478(44)4.1791(71) D JK /kHz18.773(16)18.721(21) DKDK /kHz22.761(40)20.642(26) d1d1 /kHz (41) (67) d2d2 /kHz0.0312(19)0.0352(18) Number of lines RMS/kHz The fit: 15 N 2 -C 5 H 5 N

A 1 (  = 0, I = 0) stateB 2 (  = 1, I = 1) state MP2 rigid dimerPyridine R /Å  // 10(1) 4.6  // 90.0 V2V2 /cm tor /cm  aa /MHz (15)3.2880(24) (3)  bb /MHz (166)1.4946(44) 1.434(3)  cc /MHz (166) (44) 3.474(3) IaIa /amu Å (31) (36) (6) IbIb /amu Å (22) (34) (6) IcIc /amu Å (22) (30) (6) N 2 -OCS V 2 = 40 cm -1 J. P. Connelly, S. P. Duxon, S. K. Kennedy, B. J. Howard, and J. S. Muenter, J. Mol. Spectrosc. 175, (1996). Structural information: 15 N 2 -C 5 H 5 N

The structure 15 nitrogen-pyridine dimer. MP2/6-311G(d,p) binding energy: 438 cm -1 (1.3 kcal/mol) DimerR/Å C 5 H 5 N-N a C 6 H 6 -N b C 6 H 4 F 2 -N c (N 2 ) a Y. Ohshima, H. Kohguchi, and Y. Endo, Chem. Letts. 184, 21 (1991). b Schäfer, C. Kang, and D. W. Pratt, J. Phys. Chem. A 107, (2003). C A. Wada and H. Kanamori, J. Chem. Phys. 109, 9434 (1998). [MP4 theory] N-N-N interaction

MW EXPERIMENTAL RESULTS CH 4 - C 5 H 5 N A floppy vdW system

Theory shows vdW bond distance can vary depending on the calculation methods. a K. Shibasaki, A. Fujii, N. Mikami, and S. Tsuzuki, J. Phys. Chem. A 110, 4397 (2006).

The spectrum of CH 4 -C 5 H 5 N. Sample: 0.5% pyridine + 2.5% CH atm. Ne

ConstantUnit 12 CH 4 -C 5 H 5 N A-state (j CH4 = 0, I CH4 = 2) 12 CH 4 -C 5 H 5 N F-state (j CH4 = 1, I CH4 = 1) 13 CH 4 -C 5 H 5 N AMHz (24) (69) (13) BMHz (44) (83) (33) CMHz (62) (10) (33) DJDJ kHz109.67(10)224.17(14)177.32(19) D JK kHz32.9(36)-144.2(30)-772.1(32) DKDK kHz373.6(470)101.2(40)437.1(21) d1d1 kHz-86.21(17)86.21 d2d2 kHz (79) RMSkHz  aa MHz2.99(16)  bb MHz3.92(31)  cc MHz0.93(31) M aa MHz0.036(29) RMSkHz88.0 b-dipole transitions

The structure of methane-pyridine: A vdW complex MP2/ G(d,p) binding energy: 361 cm -1 (1.03 kcal/mol) a M. Schauer and E. R. Bernstein, J. Chem.Phys. 82, 726 (1985). b D. A. Roham, S. Suzuki, R. D. Suenram, F. J. Lovas S. Dasgupta, W. A. Goddard III, and B. A. Blake, Nature, 362, 735 (1993). DimerR/Å C 5 H 5 N-CH a C 6 H 6 -CH b C 6 H 6 -NH A non-conventional NH    hydrogen bond complex

ALBERTA INGENUITY PROVIDED FINANCIAL SUPPORT THANK YOU FOR YOUR ATTENTION!