Considerations on using Solar-B observations to model the coronal field over active regions Karel Schrijver, Marc DeRosa, Ted Tarbell SOT-17 Science Meeting;

Slides:



Advertisements
Similar presentations
CME/Flare Mechanisms Solar “minimum” event this January For use to VSE must be able to predict CME/flare Spiro K. Antiochos Naval Research Laboratory.
Advertisements

SOLIS: Status and results Alexei A. Pevtsov (National Solar Observatory, USA)
Magnetic Helicity and Energetics in Solar Active Regions: Can we calculate them – why do we need them? Manolis K. Georgoulis JHU/APL Whistler, CA, 08/01/07.
Construction of 3D Active Region Fields and Plasma Properties using Measurements (Magnetic Fields & Others) S. T. Wu, A. H. Wang & Yang Liu 1 Center for.
Orsay, th SECCHI Consortium Meeting: Wiegelmann et al.: SECCHI-3D reconstruction software Wiegelmann, Inhester, Feng, Ruan, Thalmann, Podlipnik.
Evolution of Magnetic Helicity in the Corona During Flux Emergence Anna Malanushenko, Humed Yusuf, Dana Longcope.
Free Magnetic Energy and Flare Productivity of Active Regions Jing et al. ApJ, 2010, April 20 v713 issue, in press.
Resolving the 180 Degree Ambiguity in Vector Magnetic Fields T. Metcalf.
Comparison of NLFFF Extrapolations for Chromospheric and Photospheric Magnetograms of AR J. McTiernan SSL/UCB SHINE 2005 Workhsop.
Reducing the Divergence of Optimization-Generated Magnetic Fields J.M. McTiernan, B.T. Welsch, G.H. Fisher, D.J. Bercik, W.P. Abbett Space Sciences Lab.
Vincent Surges Advisors: Yingna Su Aad van Ballegooijen Observations and Magnetic Field Modeling of a flare/CME event on 2010 April 8.
M3 Session AIA/HMI Science Meeting D-1 : M3-Magnetic Field Data Products Data Product Development Session Chairs: R. Larsen/Y. Liu Status: [draft]
Non-linear FFF Model: AR8210 J.McTiernan 1-Mar-2004.
HMI – Synoptic Data Sets HMI Team Meeting Jan. 26, 2005 Stanford, CA.
Free Magnetic Energy: Crude Estimates by Brian Welsch, Space Sciences Lab, UC-Berkeley.
MSU Team: R. C. Canfield, D. W. Longcope, P. C. H. Martens, S. Régnier Evolution on the photosphere: magnetic and velocity fields 3D coronal magnetic fields.
1 SDO/HMI Products From Vector Magnetograms Yang Liu – Stanford University
NJIT-seminar Newark, NJITWiegelmann et al: Nonlinear force-free fields 1 Nonlinear force-free extrapolation of coronal magnetic.
Nonlinear Force Free Field Extrapolation for AR J.McTiernan 7-Nov-2005.
Feb. 2006HMI/AIA Science Team Mtg.1 Determining the 3D Magnetic Field Geometry A. A. van Ballegooijen, E. E. DeLuca, M. Bobra Smithsonian Astrophysical.
Magnetic Field Extrapolations And Current Sheets B. T. Welsch, 1 I. De Moortel, 2 and J. M. McTiernan 1 1 Space Sciences Lab, UC Berkeley 2 School of Mathematics.
Nonlinear Force Free Field Models for AR J.McTiernan, H.Hudson (SSL/UCB) T.Metcalf (LMSAL)
Free Energies via Velocity Estimates B.T. Welsch & G.H. Fisher, Space Sciences Lab, UC Berkeley.
Predicting Coronal Emissions with Multiple Heating Rates Loraine Lundquist George Fisher Tom Metcalf K.D. Leka Jim McTiernan AGU 2005.
Summary of workshop on AR May One of the MURI candidate active regions selected for detailed study and modeling.
Preliminary Results from Nonlinear Field Extrapolations using Hinode Boundary Data Marc DeRosa (LMSAL), on behalf of the NLFFF Team* WG1 ~ SHINE 2007 *Karel.
Changes of Magnetic Structure in 3-D Associated with Major Flares X3.4 flare of 2006 December 13 (J. Jing, T. Wiegelmann, Y. Suematsu M.Kubo, and H. Wang,
Stokes Inversion 180  Azimuth Ambiguity Resolution Non-linear Force-free field (NLFFF) Extrapolation of Magnetic Field Progress in Setting up Data Processing.
Nonlinear Force-Free Field Modeling AIA/HMI Science Team Meeting Session C2 14 February 2006 Marc DeRosa on behalf of the “NLFFF Consortium” (Karel Schrijver,
Data-Driven Simulations of AR8210 W.P. Abbett Space Sciences Laboratory, UC Berkeley SHINE Workshop 2004.
Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State (Regnier, S., Priest, E.R ApJ) Use magnetic field extrapolations.
NLFFF Extrapolation for AR J.McTiernan. *Chromospheric* Vector Magnetogram of AR (from Tom Metcalf) 18:46 UT Image is of Line of sight B (B.
NLFFF Energy Measurement of AR8210 J.McTiernan SSL/UCB.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps C4/C6/M8HMI/AIA science teams meeting; Monterey; Feb I: C4/C6/M8:
The Effect of Sub-surface Fields on the Dynamic Evolution of a Model Corona Goals :  To predict the onset of a CME based upon reliable measurements of.
Active Region Flux Transport Observational Techniques, Results, & Implications B. T. Welsch G. H. Fisher
B. T. Welsch Space Sciences Lab, Univ. of California, Berkeley, CA J. M. McTiernan Space Sciences.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps C4/C6/M8HMI/AIA science teams meeting; Monterey; Feb I: C4/C6/M8:
1 What is the best way to use the chromospheric field information in coronal field extrapolation? Current state of art are nonlinear force-free extrapolations.
Instrumental & Technical Requirements. Science objectives for helioseismology Understanding the interaction of the p-mode oscillations and the solar magnetic.
Estimating Free Magnetic Energy from an HMI Magnetogram by Brian T. Welsch Space Sciences Lab, UC-Berkeley Several methods have been proposed to estimate.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
Can we use nonlinear and selfconsistent models for data analysis? We learned from Prof. Schindler about the importance of nonlinear and selfconsistent.
Extrapolation of magnetic fields
Pros and Cons of Various Magnetic Field Extrapolation Techniques Marc DeRosa Lockheed Martin Solar and Astrophysics Lab WG5 - SHINE 2007.
Coronal Mass Ejection As a Result of Magnetic Helicity Accumulation
Newark, Wiegelmann et al.: Coronal magnetic fields1 Solar coronal magnetic fields: Source of Space weather Thomas Wiegelmann, Julia Thalmann,
Optimization_fff as a Data Product J.McTiernan HMI/AIA Meeting 16-Feb-2006.
Practical Calculation of Magnetic Energy and Relative Magnetic Helicity Budgets in Solar Active Regions Manolis K. Georgoulis Research Center for Astronomy.
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
Azimuth disambiguation of solar vector magnetograms M. K. Georgoulis JHU/APL Johns Hopkins Rd., Laurel, MD 20723, USA Ambiguity Workshop Boulder,
Coronal magnetic fields Thomas Wiegelmann, MPI for Solar-System Research, (Former: MPI für Aeronomie) Katlenburg-Lindau Why are coronal magnetic fields.
SDO-meeting Napa, Wiegelmann et al: Nonlinear force-free fields 1 Nonlinear force-free field modeling for SDO T. Wiegelmann, J.K. Thalmann,
On the Structure of Magnetic Field and Radioemission of Sunspot-related Source in Solar Active Region T. I. Kaltman, V. M. Bogod St. Petersburg branch.
Feb. 3-5, 20034th Solar-B science meeting1 Corona-Photosphere Connection with Spectropolarimeter Yukio Katsukawa (Univ. of Tokyo)
Session 10 SHINE Workshop, June 23-27, 2008 Vector Magnetic Data Input into Global Models (Session 10) Chairs: Marc DeRosa and Ilia Roussev Working Group.
3-D Magnetic Field Configuration of the 2006 December 13 Flare Yang Guo & Ming-De Ding Department of Astronomy, Nanjing University, China Thomas Wiegelmann.
Effect of solar chromospheric neutrals on equilibrium field structures - T. Arber, G. Botha & C. Brady (ApJ 2009) 太陽雑誌会ー 22/01/10.
Observations and nonlinear force-free field modeling of active region Y. Su, A. van Ballegooijen, B. W. Lites, E. E. DeLuca, L. Golub, P. C. Grigis,
Scientific Interests in OVSA Expanded Array Haimin Wang.
Calibration of Solar Magnetograms and 180 degree ambiguity resolution Moon, Yong-Jae ( 文 鎔 梓 ) (Korea Astronomy and Space Science Institute)
Data-constrained Simulation of CME Initiation and Propagation Antonia Savcheva ESPM 2014 September 11, 2014 Collaborators: R. Evans, B. van der Holst,
Coronal Magnetic Field – Force-Free Field and Topology CSI 769 / ASTR 769 Lect. 04, Feb. 14 Spring 2008 References: Aschwanden: Chap. 5.3 – 5.6 Articles:
A Method for Solving 180 Degree Ambiguity in Observed Solar Transverse Magnetic Field Huaning Wang National Astronomical Observatories Chinese Academy.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
Extrapolating Coronal Magnetic Fields T. Metcalf.
SDO-meeting Napa, Wiegelmann et al: Nonlinear force-free fields 1 A brief summary about nonlinear force-free coronal magnetic field modelling.
NLFFF Energy Measurement of AR8210
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
Abstract We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions. The flux tube starts to evolve slowly(quasi-statically)
Presentation transcript:

Considerations on using Solar-B observations to model the coronal field over active regions Karel Schrijver, Marc DeRosa, Ted Tarbell SOT-17 Science Meeting; 19 April 2006

Field modeling methods Comparison of 6 non-linear force free-field models reveals: Analytical test cases can be successfully modeled. Solutions are very sensitive to boundary conditions (which reflect the field in the [distant] surroundings of a region), as well as to errors in the vector field of the strong-field regions. Owing to this, models should not be expected to match high, weak fields. Convergence is sensitive to initial field configuration. Models differ by a factor of one million in CPU time per step. Best-performing model: the Wheatland et al. (2000) optimization method as implemented by Wiegelmann (2004). See: Schrijver et al., SPh 2006, in press; “Non-linear force-free modeling of coronal magnetic fields. I. A quantitative comparison of methods. URL:

Computational requirements Best current model requires ~8,000 CPU hrs for a 1024x1024x128-pixel cube. Improvements? Hierarchical algorithm does not provide adequate reduction of time required owing to sensitivity to resolution. Massive parallelization is required (and possible) for routine application of high-resolution field modeling. Subregion modeling that may be imposed by CPU requirement requires proper implementation of boundary conditions of subvolume.

Boundary and initial conditions Essential property of NLFFF models: constant ratio of current density and field strength along lines of force. Therefore: complete flux and current systems must be observed to avoid complete redirection of coronal field lines (see examples). Possible FPP implementation: observe entire active regions (and connected neighboring regions) in context with higher-frequency observations of a smaller region of interest (pre-&post- large-area scans, or SOLIS, …)

Boundary and initial conditions Including information on surrounding field For the best-fit model, the relative vector difference between input and model field has an average magnitude of 2%, and the average energy density in the field is approximated to within a few percent. Disregarding surrounding field

Chromospheric compass Photospheric field observed by FPP is not necessarily force-free. Observation of the chromospheric fibrils (using H  ) as frequently as the vector field provides a “chromospheric compass”. Observations may guide field modeling, or at least identify regions where photospheric Lorentz forces are substantial (where field model and fibril directions do not match).

Quantifying success Currently, no metric exists to quantify how well a field extrapolation matches the solar field. The absence of such a metric hinders us in setting uncertainties on estimates of (free) energy and helicity, and using the observed coronal field to guide field modeling.

3 rd NLFFF meeting A small hands-on workshop for NLFFF modelers to develop and test algorithms: June 5-7, 2006, Palo Alto, CA. For information, contact Karel Schrijver, Tom Metcalf, or Marc DeRosa.