Observations of SNR G156.2+5.7 at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC.

Slides:



Advertisements
Similar presentations
A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy James Di Francesco National Research Council of Canada North American.
Advertisements

(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Fundamentals of Radio Astronomy Lyle Hoffman, Lafayette College ALFALFA Undergraduate Workshop Arecibo Observatory, 2009 Jan. 12.
OH (1720 MHz) Masers: Tracers of Supernova Remnant / Molecular Cloud Interactions Crystal L. Brogan (NRAO) VLBA 10 th Anniversary Meeting June 8-12, 2003.
S-PASS, a new view of the polarized sky Gianni Bernardi SKA SA On behalf of the S-PASS team CMB2013, Okinawa, June th 2013.
Primary results of polarization survey of large-SNRs at 6cm Li Xiao, XiaoHui Sun, Chen Wang, WeiBin Shi, Wolfgang Reich, JinLin Han Partner Group of MPIfR.
The Sino-German 6cm polarization survey of the Galactic plane Total intensity Polarized intensity Xiaohui Sun NAOC.
On the nature of the Long-duration radio transients Eran Ofek CALTECH Collaborators: B. Breslauer, A. Gal-Yam, D. Frail, S.R. Kulkarni, P. Chandra, M.
BDT Radio – 1b – CMV 2009/09/04 Basic Detection Techniques 1b (2009/09/04): Single pixel feeds Theory: Brightness function Beam properties Sensitivity,
A young pulsar with a long radio trail emerging from SNR G F. Camilo, C.-Y. NG et al. arxiv : v1.
The Evolution of Extragalactic Radio Sources Greg Taylor (UNM), Steve Allen (KIPAC), Andy Fabian (IoA), Jeremy Sanders (IoA), Robert Dunn (IoA), Gianfranco.
Facts about SNe and their remnants Evolution of an SNR sensitively depends on its environment. Observed SNRs are typically produced by SNe in relative.
SLAC, 7 October Multifrequency Strategies for the Identification of Gamma-Ray Sources Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
Galactic Magnetic Field Research with LOFAR Wolfgang Reich Max-Planck-Institut für Radioastronomie Bonn, Germany.
Radio Emission from Masuda Sources New Jersey Institute of Technology Sung-Hong Park.
Panorama of the Universe: Daily all-sky surveys with the SKA John D. Bunton, CSIRO TIP, Ronald D. Ekers, CSIRO ATNF and Elaine M. Sadler, University of.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
Low frequency sky surveys with the Murchison Widefield Array (MWA) Gianni Bernardi Harvard-Smithsonian Center for Astrophysics SKA SA project/MeerKAT observatory.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
“First Light” From New Probes of the Dark Ages and Reionization Judd D. Bowman (Caltech) Hubble Fellows Symposium 2008.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Long-term monitoring of RRAT J HU HuiDong Urumqi Observatory, NAOC July 27, 2009 Rotating Radio Transients Observation.
Wideband Imaging and Measurements ASTRONOMY AND SPACE SCIENCE Jamie Stevens | ATCA Senior Systems Scientist / ATCA Lead Scientist 2 October 2014.
Polarization Surveys with the DRAO 26-m Telescope at 1.4 GHz Maik Wolleben, T. Landecker, O. Davison Dominion Radio Astrophysical Observatory W. Reich,
Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004 Sensitivity Joan Wrobel.
Survey Quality Jim Condon NRAO, Charlottesville. Survey Qualities Leiden 2011 Feb 25 Point-source detection limit S lim Resolution Ω s Brightness sensitivity.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
Interaction in the NGC 3079 group Nebiha Shafi University of Witwatersrand and HartRAO Supervisors: Prof. Roy Booth (HartRAO) Dr. Raffaella Morganti Dr.
Imaging Compact Supermassive Binary Black Holes with VLBI G. B. Taylor (UNM), C. Rodriguez (UNM), R. T. Zavala (USNO) A. B. Peck (CfA), L. K. Pollack (UCSC),
The Galactic Center at Low Radio Frequencies Namir Kassim (NRL) Crystal Brogan (IfA) J. Lazio (NRL), Ted LaRosa (Kennesaw State), M. Nord (NRL/UNM), W.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
Galactic Radioemission – a problem for precision cosmology ? Absolute Temperatures at Short CM-Waves with a Lunar Radio Telescope Wolfgang Reich Max-Planck-Institut.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Extragalactic Absorption Lines Observed from Arecibo Chris Salter (National Astronomy & Ionosphere Center, Arecibo Observatory, Puerto Rico)
A numerical study of the afterglow emission from GRB double-sided jets Collaborators Y. F. Huang, S. W. Kong Xin Wang Department of Astronomy, Nanjing.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
2005/9/28 X-ray Universe The electron and magnetic field energies in the east lobe of the radio galaxy Fornax A, measured with XMM-Newton. Naoki.
EVN observations of GPS radio sources Liu X. Urumqi Observatory, NAOC.
The MOJAVE Program: Studying the Relativistic Kinematics of AGN Jets Jansky Postdoctoral Fellow National Radio Astronomy Observatory Matthew Lister.
Redshift, Time, Spectrum – Sándor Frey (FÖMI SGO, Hungary) In collaboration with: Leonid I. Gurvits (JIVE, The Netherlands) Zsolt Paragi (JIVE, The Netherlands)
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
The low frequency Galactic polarisation foreground Xiaohui Sun & Wolfang Reich MPIfR
Weibin Shi, Xiaohui Sun, Wolfgang Reich Jinlin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR at NAOC Primary results for 6cm polarization.
Methanol Masers in the NGC6334F Star Forming Region Simon Ellingsen & Anne-Marie Brick University of Tasmania Centre for Astrophysics of Compact Objects.
IC443(09.09-)&Kes78 (09.05-) Ping, Zhou. Part1: IC443 CO observation, map and spectrum Compare with other wavelength Part2: Kes78 12CO(1-0), 13CO(1-0)
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
Outline Cosmic Rays and Super-Nova Remnants
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Magnetic Fields in Supernova Remnants Kashi & Urumqi, 2005 Sept. 7 th -14 th.
Galactic Legacy Projects Naomi McClure-Griffiths Australia Telescope National Facility, CSIRO NRAO Legacy Projects Meeting, 17 May 2006.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
W.Becker 1, M.C.Weisskopf 2, Z.Arzoumanian 3, D.Lorimer 4, F.Camilo 5, R.F.Elsner 2, G.Kanbach 1, O.Reimer 6, D.A.Swartz 2, A.F.Tennant 2, S.L.O’Dell 2.
The Radio Properties of Type II Quasars PLAN Type II quasars Motivations Our sample Radio observations Basic radio properties Compare our results with.
Collaborators Peking University Guojun Qiao, Renxin Xu, Jiguang Lu, Kejia Lee Qian Xuesen Laboratory of Space Technology Yuanjie Du China West Normal University.
Finding the next Galactic extragalactic FRB
Searching FRB with Jiamusi-66m Radio Telescope
Polarization of Cluster Radio Sources with LOFAR
XMM-Newton Observation of the composite SNR G0. 9+0
1.4 GHz Source Counts Melanie Gendre Walter Max-Moerbeck
SKADS Polarization Simulations The MPIfR team (Milky Way & star-forming galaxies): Tigran Arshakian, Rainer Beck, Marita Krause, Wolfgang Reich, XiaoHui.
Presentation transcript:

Observations of SNR G at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC

System parameters/Calibrators Central frequency: 4.8 GHz Bandwidth: 600 MHz System temperature: K HPBW: 9.5 arcmin Aperture efficiency: 62% Beam efficiency: 67% Conversion factor: K/Jy r.m.s: 1.5 mK for 1s integration tim Primary Calibrator: 3C138 –Intensity: 3.64 Jy, –Polarization Angle: 169 deg, –Polarization Percent: 11.7%

Properties of SNR G Identified firstly by the ROSAT observatory in the all- sky survey for X-ray sources Among the 10 brightest X-ray Galactic SNRs The lowest radio surface brightness among all known SNRs Common magnetic field strength & therefore a low electron density

Some Parameters of SNR G Spectral index  = 0.5  0.15 (Reich et al. 1992) A distance of d  3kpc (Pfeffermann et al. 1991) A diameter of 108’, or  95pc (Pfeffermann et al. 1991) Type I progenitor SN of E 0 = erg (Reich et al. 1992) An age of   2.6  10 4 yr (Pfeffermann et al. 1991)

r.m.s: 1.0 mK in I Flux density:2.2+/-0.6Jy polarization percentage : Left:<= 40%, Right:<=70% G one of the most weak SNRs The red source in the southwest with strongest radio emission is probably an extragalactic one Total intensity (image)

r.m.s: 1.0 mK in I Flux density:2.2+/-0.6Jy polarization percentage : Left:<= 40%, Right:<=70% G Total intensity (image+contours) one of the most weak SNRs The red source in the southwest with strongest radio emission is probably an extragalactic one

r.m.s: 1.0 mK in I Flux density:2.2+/-0.6Jy polarization percentage : Left:<= 40%, Right:<=70% G Intensity (image) + B (bars) + Polarization Intensity (contours) one of the most weak SNRs small patchy of polarization in the center ---probably local structure

r.m.s: 0.25 K T B in I Flux density:4.2+/-1.0Jy polarization percentage : unavailable G Intensity (image+contours) (Reich et al. 1992) one of the most weak SNRs The source in the southwest with strongest radio emission is probably an extragalactic one

r.m.s: unavailable Flux density:3.0+/-1.0Jy polarization percentage : Left:<= 75%, Right:<=50% G Intensity (image) + B (bars) + Polarization Intensity (contours)(Reich et al. 1992) one of the most weak SNRs small patchy of polarization in the center ---probably local structure

r.m.s: 0.5 mK in PI Flux density:2.2+/-0.6Jy Polarization percentage : Left:<= 40%, Right:<=70% G Polarization Intensity (contours) one of the most weak SNRs small patchy of polarization in the center ---probably local structure

r.m.s: 0.5 mK in PI Flux density:2.2+/-0.6Jy polarization percentage : Left:<= 40%, Right:<=70% G Polarization Intensity (contours) + B (bars) one of the most weak SNRs small patchy of polarization in the center ---probably local structure

r.m.s: unavailable Flux density:3.0+/-1.0Jy polarization percentage : Left:<= 75%, Right:<=50% G Polarization Intensity (contours) + B (bars) (Reich et al. 1992) one of the most weak SNRs small patchy of polarization in the center ---probably local structure

r.m.s: 1.0 mK in I, 0.5 mK in PI Flux density:2.2+/-0.6Jy polarization percentage : Left:<= 40%, Right:<=70% G Polarization Percentage (contours) one of the most weak SNRs small patchy of polarization in the center ---probably local structure

Integrated flux densities --by open circle (derived from our observations) --by filled circle (taken from Reich et al. 1992) G Radio spectrum at 4.8 GHz Spectral index  = 0.54  0.06

Summary Total flux density is 2.2  0.6 Jy at 4.8GHz Spectral index is  = 0.54  0.06 Surface brightness  = 2.9  W m -2 Hz -1 sr -1 a t 4.8GHz

Thank You