Magnetic Fields A vector quantity Symbolized by

Slides:



Advertisements
Similar presentations
Chapter 29 Magnetic Fields.
Advertisements

Chapter 19 Magnetism Conceptual questions: 5,6,8,14,16
Lecture Demos: E-40 Magnetic Fields of Permanent Magnets (6A-1) E-41 Oersted’s Experiment (6B-1) E-42 Force on a Moving Charge (6B-2) 6B-3 Magnetic Field.
Chapter 20 Magnetism.
Lecture 7 Magnetic Field and Magnetic Force Chapter 19.1  19.6 Outline Magnets Magnetic Field Magnetic Force Motion in a Magnetic Field.
Magnetism Magnets are used in meter, motors, speakers, CDs, MRIs, cyclotrons and to store computer data. They are used to move heavy objects, propel trains.
PHYSICS PUZZLER Aurora borealis (the northern lights), photographed near Fairbanks, Alaska. Auroras occur when cosmic rays— electrically charged particles,
Motion of Charged Particles in Magnetic Fields
Chapter 29 Magnetic Fields.
Chapter 32 Magnetic Fields.
Chapter 22 Magnetism.
Chapter 19 Magnetism. clicker A wire of resistance 2 Ohms has been shaped in to a pentagon. What is the equivalent resistance between points A and B.
Announcements WebAssign HW Set 5 due October 10
Chapter 19 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel.
Chapter 19 Magnetism.
Magnetic Fields AP Physics C Montwood High School R. Casao.
Chapter 19 Magnetism.
Chapter 19 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel.
Chapter 20 Magnetism.
Magnetism A Strangely Attractive Topic History #1 à Term comes from the ancient Greek city of Magnesia, at which many natural magnets were found. We.
Chapter 19 Magnetism. Magnetism is one of the most important fields in physics in terms of applications. Magnetism is closely linked with electricity.
Chapter 19 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel.
Chapter 29 Magnetic Fields. A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic.
Announcements WebAssign HW Set 6 due this Friday Problems cover material from Chapters 19 Prof. Kumar tea and cookies today from 5 – 6 pm in room 2165.
Chapter 16 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel.
Chapter 19 Magnetism.
Conventional current: the charges flow from positive to negative electron flow: the charges move from negative to positive the “flow of electrons” Hand.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Magnetism AP Physics Chapter 20. Magnetism 20.1 Mangets and Magnetic Fields.
Lecture 12 Magnetic Force on a Current Torque on a Current Loop Motion of Charged Particle in a Magnetic Field Magnetic Field of a Wire.
Chapter 29 Magnetic Fields 1.Introduction to magnetic field. 2.The forces on moving charges and currents inside a magnetic field. 3.The math that will.
Magnetic Field.
Chapter 19 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Poles of a magnet are the ends where objects are.
A permanent magnet has a north magnetic pole and a south magnetic pole. Like poles repel; unlike poles attract.
Announcements WebAssign HW Set 5 due October 10 Problems cover material from Chapters 18 HW set 6 due on October 17 (Chapter 19) Prof. Kumar tea and cookies.
Magnetic Forces and Magnetic Fields
Chapter 28 Lecture 26 Magnetic Fields: I. Magnetic Poles Every magnet, regardless of its shape, has two poles Called north and south poles Poles exert.
Ch Magnetic Forces and Fields
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 19 Magnetism. Fig. 19.1, p.587 Magnets Poles of a magnet are the ends where objects are most strongly attracted – Two poles, called north and.
Magnetic Forces and Magnetic Fields
Chapter 19 Magnetism. Magnets In each magnet there are two poles present (the ends where objects are most strongly attracted): north and south Like (unlike)
Lecture 27 Magnetic Fields: II
Magnetism Unit 12. Magnets Magnet – a material in which the spinning electrons of its atom are aligned with one another Magnet – a material in which the.
Magnetic Fields. Video from the International Space Station on Magnetism Permanent Magnets
It is against the honor code to “click” for someone else-violators will loose all clicker pts. HITT RF Remote Login Procedure: 1. PRESS AND HOLD THE DOWN.
A permanent magnet has a north magnetic pole and a south magnetic pole. Like poles repel; unlike poles attract.
Chapter 16 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel.
Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted – Two poles, called north and south Like poles repel each.
Chapter 19 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Poles of a magnet are the ends where objects are.
Chapter 19 Magnetism. Magnetism is one of the most important fields in physics in terms of applications. Magnetism is closely linked with electricity.
Physics Chapter 21: Magnetism. ☺Magnets ☺Caused by the Polarization of Iron Molecules ☺Material Containing Iron (Fe)
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Chapter 21 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel.
Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract. If you cut a magnet in half, you don’t get a north pole.
Physics 213 General Physics Lecture Last Meeting: Kirchhoff Rules, RC Circuit Today: Magnetism & Magnetic Field.
Solar Magnetic Fields. Capacitors in Circuits Charge takes time to move through wire  V is felt at the speed of light, however Change in potential across.
Chapter 24 Magnetic Fields.
Phys102 Lecture 13, 14, 15 Magnetic fields
Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and.
Chapter 19 Magnetism.
Chapter 19 Magnetism.
Force on an Electric Charge Moving in a Magnetic Field
Magnetism.
Electromagnetism It was observed in the 18th century that an electric current can deflect a compass needle the same way a magnetic field can, and a connection.
Chapter 19 Magnetism.
Chapter 19 Magnetism.
Chapter 19 Magnetism.
Chapter 19 Magnetism.
Presentation transcript:

Magnetic Fields A vector quantity Symbolized by Direction is given by the direction a north pole of a compass needle points in that location Magnetic field lines can be used to show how the field lines, as traced out by a compass, would look

Magnetic Field Lines, sketch A compass can be used to show the direction of the magnetic field lines (a) A sketch of the magnetic field lines (b)

Magnetic Field Lines, Bar Magnet Iron filings are used to show the pattern of the magnetic field lines The direction of the field is the direction a north pole would point

Magnetic Field Lines, Unlike Poles Iron filings are used to show the pattern of the magnetic field lines The direction of the field is the direction a north pole would point Compare to the magnetic field produced by an electric dipole

Magnetic Field Lines, Like Poles Iron filings are used to show the pattern of the electric field lines The direction of the field is the direction a north pole would point Compare to the electric field produced by like charges

Earth’s Magnetic Field The Earth’s magnetic field resembles that achieved by burying a huge bar magnet deep in the Earth’s interior

Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic field lines This force is zero when the charge moves along the field lines

Magnetic Fields, cont One can define a magnetic field in terms of the magnetic force exerted on a test charge moving in the field with velocity Similar to the way electric fields are defined

Units of Magnetic Field The SI unit of magnetic field is the Tesla (T) Wb is a Weber The cgs unit is a Gauss (G) 1 T = 104 G

A Few Typical B Values Conventional laboratory magnets 25000 G or 2.5 T Superconducting magnets 300000 G or 30 T Earth’s magnetic field 0.5 G or 5 x 10-5 T

Finding the Direction of Magnetic Force Experiments show that the direction of the magnetic force is always perpendicular to both and Fmax occurs when is perpendicular to F = 0 when is parallel to

Right Hand Rule #1 Place your fingers in the direction of Curl the fingers in the direction of the magnetic field, Your thumb points in the direction of the force, , on a positive charge If the charge is negative, the force is opposite that determined by the right hand rule

Magnetic Force on a Current Carrying Conductor A force is exerted on a current-carrying wire placed in a magnetic field The current is a collection of many charged particles in motion The direction of the force is given by right hand rule #1

Force on a Wire The blue x’s indicate the magnetic field is directed into the page The x represents the tail of the arrow Blue dots would be used to represent the field directed out of the page The • represents the head of the arrow In this case, there is no current, so there is no force

Force on a Wire, cont B is into the page The current is up the page The force is to the left

Force on a Wire, final B is into the page The current is down the page The force is to the right

Force on a Wire, equation The magnetic force is exerted on each moving charge in the wire The total force is the sum of all the magnetic forces on all the individual charges producing the current F = B I ℓ sin θ θ is the angle between and the direction of I The direction is found by the right hand rule, placing your fingers in the direction of I instead of

Torque on a Current Loop Applies to any shape loop N is the number of turns in the coil Torque has a maximum value of NBIA When q = 90° Torque is zero when the field is parallel to the plane of the loop

Electric Motor An electric motor converts electrical energy to mechanical energy The mechanical energy is in the form of rotational kinetic energy An electric motor consists of a rigid current-carrying loop that rotates when placed in a magnetic field

Force on a Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field so that its velocity is perpendicular to the field The force is always directed toward the center of the circular path The magnetic force causes a centripetal acceleration, changing the direction of the velocity of the particle

Force on a Charged Particle Equating the magnetic and centripetal forces: Solving for r: r is proportional to the momentum of the particle and inversely proportional to the magnetic field Sometimes called the cyclotron equation

Particle Moving in an External Magnetic Field If the particle’s velocity is not perpendicular to the field, the path followed by the particle is a spiral The spiral path is called a helix