© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.

Slides:



Advertisements
Similar presentations
SuperDARN is a network of HF radars (8-20 MHz) used to study the convection in the Earth's ionosphere at altitudes between 90 and 400 km and at magnetic.
Advertisements

ASEN 5335 Aerospace Environments -- Magnetospheres
Generation of the transpolar potential Ramon E. Lopez Dept. of Physics UT Arlington.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
The role of solar wind energy flux for transpolar arc luminosity A.Kullen 1, J. A. Cumnock 2,3, and T. Karlsson 2 1 Swedish Institute of Space Physics,
Anti-parallel versus Component Reconnection at the Magnetopause K.J. Trattner Lockheed Martin Advanced Technology Center Palo Alto, CA, USA and the Polar/TIMAS,
Occurrence and properties of substorms associated with pseudobreakups Anita Kullen Space & Plasma Physics, EES.
Normal text - click to edit 1 August 2011 Auroral asymmetries in the conjugate hemispheres (and where KuaFu B can do better……) Nikolai Østgaard University.
SuperDARN Workshop May 30 – June Magnetopause reconnection rate and cold plasma density: a study using SuperDARN Mark Lester 1, Adrian Grocott 1,2,
Solar wind-magnetosphere coupling Magnetic reconnection In most solar system environments magnetic fields are “frozen” to the plasma - different plasmas.
1 Sounding rocket measurements of decameter structures in the cusp K. Oksavik 1, J. Moen 1,2, D. A. Lorentzen 1, F. Sigernes 1, T. Abe 3, Y. Saito 3, and.
OpenGGCM Simulation vs THEMIS Observations in an Dayside Event Wenhui Li and Joachim Raeder University of New Hampshire Marit Øieroset University of California,
SuperDARN and reversed flow events in the cusp
State Key Laboratory of Space Weather An inter-hemisphere asymmetry of the cusp region against the geomagnetic dipole tilt Jiankui Shi Center for Space.
O. M. Shalabiea Department of Physics, Northern Borders University, KSA.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Solar system science using X-Rays Magnetosheath dynamics Shock – shock interactions Auroral X-ray emissions Solar X-rays Comets Other planets Not discussed.
Observation and Theory of Substorm Onset C. Z. (Frank) Cheng (1,2), T. F. Chang (2), Sorin Zaharia (3), N. N. Gorelenkov (4) (1)Plasma and Space Science.
On the importance of IMF |B Y | on polar cap patch formation Qinghe Zhang 1, Beichen Zhang 1, Ruiyuan Liu 1, M. W. Dunlop 2, M. Lockwood 2, 3, J. Moen.
Radio and Space Plasma Physics Group The formation of transpolar arcs R. C. Fear and S. E. Milan University of Leicester.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Auroral Boundaries Model Validation – What has been done.
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
Magnetosphere – Ionosphere Coupling in the Auroral Region: A Cluster Perspective Octav Marghitu Institute for Space Sciences, Bucharest, Romania 17 th.
EISCAT Svalbard Radar studies of meso-scale plasma flow channels in the polar cusp ionosphere Y. Dåbakk et al.
OXYGEN ION ACCELERATION AND CONVECTION IN THE POLAR MAGNETOSPHERE B. Klecker for the CLUSTER Team at MPE G. Paschmann, B. Klecker, M. Förster, H. Vaith,
Magnetosphere-Ionosphere coupling processes reflected in
EISCAT-Cluster observations of quiet-time near-Earth magnetotail fast flows and their signatures in the ionosphere Nordic Cluster Meeting, Uppsala, Sweden,
Localized Thermospheric Energy Deposition Observed by DMSP Spacecraft D. J. Knipp 1,2, 1 Unversity of Colorado, Boulder, CO, USA 2 High Altitude Observatory,
Earth’s Magnetosphere — A very quick introduction Weichao Tu - LASP of CU-Boulder CEDAR-GEM Joint Workshop - Santa Fe, NM - 06/26/2011.
MAGNETOSPHERIC RESPONSE TO COMPLEX INTERPLANETARY DRIVING DURING SOLAR MINIMUM: MULTI-POINT INVESTIGATION R. Koleva, A. Bochev Space and Solar Terrestrial.
Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap , P (main) Tascione: Chap.
Response of the Magnetosphere and Ionosphere to Solar Wind Dynamic Pressure Pulse KYUNG SUN PARK 1, TATSUKI OGINO 2, and DAE-YOUNG LEE 3 1 School of Space.
Recent THEMIS and coordinated GBO measurements of substorm expansion onset: Do we finally have an answer? Larry Kepko NASA/Goddard Space Flight Center.
07/11/2007ESSW4, Brussels1 Coupling between magnetospheric and auroral ionospheric scales during space weather events M. ECHIM (1,2), M. ROTH(1) and J.
ESS 7 Lecture 13 October 29, 2008 Substorms. Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite.
Relating the Equatorward Boundary of the Diffuse Redline Aurora to its Magnetospheric Counterpart Grant, Jeff 1 ; Donovan, Eric 1 ; Spanswick, Emma 1 ;
Ionospheric Convection during an extended period of Northward IMF
Yvonne Rinne, Departement of Physics, University of Oslo Mesoscale transient flow channels observed in the cusp ionosphere by the EISCAT Svalbard Radar.
PARTICLES IN THE MAGNETOSPHERE
Mass Transport: To the Plasma Sheet – and Beyond!
17th Cluster workshop Uppsala, Sweden , May 12-15, 2009
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
Space Science MO&DA Programs - November Page 1 SS It is well known that intense auroral disturbances occur in association with substorms and are.
The Geomagnetic Cusps: Magnetic Topology and Physical Processes Antonius Otto Thanks to: Eric Adamson, Katariina Nykyri, Julia Pilchowski, Jason McDonald.
MULTI-INSTRUMENT STUDY OF THE ENERGY STEP STRUCTURES OF O + AND H + IONS IN THE CUSP AND POLAR CAP REGIONS Yulia V. Bogdanova, Berndt Klecker and CIS TEAM.
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
Multi-Fluid/Particle Treatment of Magnetospheric- Ionospheric Coupling During Substorms and Storms R. M. Winglee.
SS Special Section of JGR Space Physics Marks Polar’s 5th Anniversary September 4, 1996 This April special section is first of two Polar special sections.
Postmidnight ionospheric trough in summer and link to solar wind: how, when and why? Mirela Voiculescu (1), T. Nygrén (2), A. Aikio(2), H. Vanhamäki (2)
Radiation Belt Storm Probes Mission and the Ionosphere-Thermosphere RPSP SWG Meeting June 2009.
 Morphology and Dynamics of Auroral Arcs By Sarah Bender Mentor: Kyle Murphy 8/7/2014.
Cluster observation of electron acceleration by ULF Alfvén waves
Dynamics of the auroral bifurcations at Saturn and their role in magnetopause reconnection LPAP - Université de Liège A. Radioti, J.-C. Gérard, D. Grodent,
Challenges The topological status of the magnetosphere: open or closed? Driver(s) of ionospheric sunward flow Source(s) of NBZ currents Key problem: are.
Paul Song Center for Atmospheric Research
CEDAR Frontiers: Daytime Optical Aeronomy Duggirala Pallamraju and Supriya Chakrabarti Center for Space Physics, Boston University &
Recent KTH Cluster research
MESSENGER observations of Mercury’s northern cusp
Evidence for Dayside Interhemispheric Field-Aligned Currents During Strong IMF By Conditions Seen by SuperDARN Radars Joseph B.H. Baker, Bharat Kunduri.
Ionosphere, Magnetosphere and Thermosphere Anthea Coster
PLANETARY X-RAY AURORAS
The Physics of Space Plasmas
Jupiter’s Polar Auroral Emisssions
Introduction to Space Weather
Penetration Jet DMSP F April MLT
Solar Wind-Magnetosphere Interaction: Reconnection and IMF Dependence
Energy conversion boundaries
SuperDARN and SCANDI data
Magnetosphere: Structure and Properties
Presentation transcript:

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Dayside Magnetospheric Boundary Layers (Siscoe. 1991) (Newell ann Meng, 1992) Dayside magnetospheric boundary layers form adjacent to the magnetopause at the inner side. The dayside boyndaries are named Low-latitude boundary layer (largest surface against the solar wind), the cusp (most direct entry for shocked solar wind plasma, and plasma mantle (also called the high latitude boundary layer) The above figure shows a statistical survey of plasma precipitation regions observed by DMSPsatellites at 850 km altitude. The classification scheme is based electron and ion energy spectra and fluxes in the 32 eV-32 keV energy range.

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO BPS/LLBL/Cusp transitions Lorentzen and Moen, JGR, 2000 The MSP observations from Longyearbyen ion the rights, shows a transition from green-dominated aurora (577.7 nm) to red-dominated (630.0 nm). The red-dominted is identified as of BPS source (several keV electrons on closed field lines) and the red-dominated as of cusp source (~100 eV electrons on open field lines.

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO FAST satellite intersection of Cusp aurora To come Oksavik et al., accepted by Ann. Geophys., 2003 Notice the staircase stepped ion cuso, low energy electrons, field aligned currents signatures (magnetic field deflections) and E-field irregularities in the cusp.

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Solar wind driven ionospheric convection Magnetic flux opened by magentopause reconnection convects across the polar cap, followed by tail reconnection and sunward return flow.

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Signatures of pulsed magnetopause recoonnection. Notice the equatorward steps and the poleward moving forms min recurrence time IMF Bz south

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO IMF By asymmetry on the movement of newly reconnected magnetic flux. The thick arrows indicate the magnetic tension for j x B which act to unbend the curved magnetic field lines

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO IMF controlled convection patterns Reiff and Burch, JGR, 1985 Notice the IMF By controlled east-west shift in the cusp inflow region during IMF Bz south conditions in favour of magnetopause reconnection.

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO BYBY BXBX BZBZ Moen et al., GRL, 1999 IMF-By controlled CUSP reconfiguration The image sequence demonstrates the auroral response to an an IMF By polarity change from negative to positive. The polarity change was associated with a transition from westward moving to eastward moving auroral events, consistent with magnetopause reconnection and the magetic tension force. The time lag from IMF to the ionospheric response was around minutes.

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO 30 keV electron trapping boundary NOAA-12 Moving auroral form X-line expansion into the 17 MLT sector

© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Arc crosing Arc crossing