Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Reaction dynamics of light nuclei around the Coulomb barrier Alessia Di Pietro INFN-Laboratori Nazionali del Sud ARIS 2014Alessia Di Pietro,INFN-LNS.
Single Neutron Stripping Reactions for Structural Study of 23 O Ravinder Kumar Department of Physics Kurukshetra University, Kurukshetra Kurukshetra -
Pairing & low-lying continuum states in 6He Lorenzo Fortunato Dip. Fisica e Astronomia «G.Galilei», University of Padova & I.N.F.N. – Sez. di Padova 1.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Shell Model with residual interactions – mostly 2-particle systems Simple forces, simple physical interpretation.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 6,7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Spin-orbit potential in 6 He studied with polarized proton target 2007/6/5, INPC2007 Satoshi Sakaguchi Center for Nuclear Study, Univ. of Tokyo.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Bled workshop  -core potentials for light nuclei derived from the quark-model baryon-baryon interaction Y. Fujiwara ( Kyoto) M. Kohno ( Kyushu.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Presented by Building Nuclei from the Ground Up: Nuclear Coupled-cluster Theory David J. Dean Oak Ridge National Laboratory Nuclear Coupled-cluster Collaboration:
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Pairing Correlation in neutron-rich nuclei
Two-body force in three-body system: a case of (d,p) reactions
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Open quantum systems.
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Nuclear excitations in relativistic nuclear models
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Di-nucleon correlations and soft dipole excitations in exotic nuclei
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Nicolas Michel (ESNT/SPhN/CEA) Kenichi Matsuyanagi (Kyoto University)
Presentation transcript:

Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA, RIKEN CEA/Saclay workshop “Importance of continuum coupling for nuclei close to the drip-lines” May 18-20, 2009, Saclay, France

Introduction Formalism of COSM Applications –O-isotopes, He-isotopes Comparison with GSM

Experimental situations and theoretical pictures Neutron separation energies R.m.s.radii Experiments Stable side Single-particle state Bound states (H.O. basis) Deeply bound Neutron-rich side Single-particle state Bound, continuum, Resonant states Weakly bound

Wave function to describe the weakly bound systems Shell-model-like approach Basis function: Our COSM approach Basis function: Completeness relation: Continuum shell model Gamow shell model Linear combination of Gaussian: Long tail of halo w.f. Cluster-orbital shell model

M-Scheme COSM 1. Hamiltonian and Interaction 2. Basis function 3. Stochastic variational approach Semi-microscopic approach Radial: Gaussian, Angular momentum: M-Scheme To reduce the basis size

Cluster-Orbital shell model (COSM) Y. Suzuki and K. Ikeda, PRC38(1998) Original: study of He-isotopes Shell-model Matrix elements (TBME) For many-particles COSM is suitable to describe systems: Weakly bound nucleons around a core Cluster-model Center of mass motion

1. Hamiltonian and interactions Core part Valence part Treated by OCM A-body Hamiltonian Different size of the core gives different energy Decompose: core + valence parts Recoil: Semi-microscopic way: Anti-sym. Core and N: S. Saito PTPS 62(1977)11 Folding. direct + exchange Dynamics of the core H. M, K. Kato, and K. Ikeda, PRC73, (2006). “Cluster-Orbital Shell Model” (COSM) Y. Suzuki and K. Ikeda, PRC38(1988)

Interactions: semi-microscopic approach Core-N: M=0.58, B=H=0 N-N: M=0.58, B=H=0.07 N-N interaction : Volkov No.2 All interactions are based on the N-N interaction (basically) Parameters: LS-interaction: Phenomenological one 17 O: 5/2 +, 1/2 +, 3/2 + A. B. Volkov, NP74 (1965) 33 To reproduce 17 O(5/2 +,1/2 +,3/2 + ), 18 O (0 + )

2. Basis function Radial part: Gaussian Angular momentum part: Z-component “M-Scheme” Basis function Shell-model H.O.basis: Gamow S.M.: Non-Orthogonal Each coordinate is spanned from the c.m. of the core, and is expressed by Gaussian with a different width parameter

3. Stochastic Variational Approach V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G3 (1977) “Refinement” procedure K. Varga, Y. Suzuki and R. G. Lovas, Nucl. Phys. A571 (1994) K. Varga and Y. Suzuki, Phys. Rev. C52(1995) Stochastic Variational procedure To reduce the basis size “exact” method 18 O ( 16 O+2n) : N=2100 Stochastic approach: N=138 H. M, K. Kato, and K. Ikeda, PRC73, (2006).

Application for the oxygen isotopes Same Hamiltonian with the (J-scheme) COSM work H. M, K. Kato, and K. Ikeda, PRC73, (2006). N-N: Volkov No.2 (M=0.58, B=H=0.07), adjusted to 18 O 0 + ground state Model space L max  5 L max  2 Valence nucleons N  4 N  10

S n for O-isotopes Exp. COSM (J-scheme) [1] COSM (M-scheme) : present [1] H. M, K. Kato, and K. Ikeda, PRC73, (2006).

J 2 -expectation values J 2 -value is almost good J=5/2 J=3/2 J=1/2 J=0

However, What is the key mechanism? N-N int.? Core-N int.? Others? The abrupt increase of R rms at 23 O can hardly be reproduced

Different NN-interactions Minnesota: u=1.0 Volkov No.2, M=0.58, B=H=0.25 Y. C. Tang, M. LeMere, and D. R. Thompson, Phys. Rep. 47 (1978)167. Different type of NN-int Weaker than the original so as to reproduce drip-line Case A Case B

B=H=0.25 B=H=0.07 Minnesota S n for O-isotopes “Case B” reproduce the dlip-line Case A Case B

B=H=0.25 B=H=0.07 Calculated R rms for O-isotopes Minnesota The abrupt increase of R rms is much more enhanced in “Case B” Case A Case B

B=H=0.07 Comparison with experments: R rms B=H=0.25 Minnesota However, the discrepancy is still large… Case A Case B

Components of the wave functions 22 O 23 O 24 O (d 5/2 ) 6 (s 1/2 ) 2 (d 5/2 ) 4 (s 1/2 )(d 5/2 ) 6 (s 1/2 )(…) (s 1/2 )(d 5/2 ) 4 (d 3/2 ) 2 (s 1/2 ) 2 (…) (s 1/2 ) 2 (d 5/2 ) 6 (s 1/2 ) 2 (…) (s 1/2 ) 2 (d 5/2 ) 4 (d 3/2 ) 2 22 O 23 O 24 O B=H=0.07 B=H= % 15.9% 16.6% 95.0% 3.1% 3.2% 91.2% 2.1% 99.6% 97.0% 0.1% 99.9% 94.6% 4.3% 99.0% 98.5% 1.2% 99.8% S-wave component is enhanced at 23 O and 24 O Case B

Volkov: B=H=0.07 Volkov: B=H=0.25 Matter density of oxygen isotopes

Matter density of 24 O with Volkov B=H=0.25 R rms = 2.87 (fm) Exp: 3.19 (0.13)

He-isotopes Core-N: KKNN potential ( H. Kanada et al., PTP61(1979) ) N-N: Minnesota (u=1.0) ( T.C. Tang et al. PR47(1978) ) An effective 3-body force ( T. Myo et al. PRC63(2001) ) calc. Ref.1 Ref.2 4 He He He [1] I. Tanihata et al., PRL55(1985) [2] G. D. Alkhazov et al. PRL78 (1997) R rmss H. M, K. Kato, K. Ikeda, PRC75 (2007)

Summary 1. M-scheme COSM approach Qualitative improvement of R rms By using Volkov No.2: over binding, R rms  A 1/3 2. Different NN-int (so as to reproduce the drip-line) Number of valence nucleons form 4 to 10 R rms is still not completely reproduced e.g. Three-body force, core-excitation (clustering),…

Comparison between COSM and GSM Collaboration with K. Kato, N. Michel, M. Ploszajczak

Im.k Re. k Bound states Anti-bound states (Virtual states) Resonant states Complex k-plane Continua

Cluster-orbital shell model (COSM) approachGamow shell model (GSM) approach Poles (bound, resonant, anti-bound states) Continua Single-particle states Many-particle states

6 He Hamiltonian V 1, V 2:, Core-N int.. V 12c : Effective 3-body int. V nn: :NN int. “KKNN”  -n phase shift Minnesota potential Model space Maximum angular momentum Comparison Energy, pole-contribution, density

Calculation COSM N Number of Gaussian functions for each core-N space Max. total basis size: 2310 Max. total basis size: 636 A) Full B) Reduced N=20 partial waves: s 1/2 p 3/2 p 1/2 d 5/2 d 3/2 f 7/2 f 5/2 g 92 g 7/2 h 11/2 h 9/2 L N partial waves: s 1/2 p 3/2 p 1/2 d 5/2 d 3/2 f 7/2 f 5/2 g 92 g 7/2 h 11/2 h 9/2 L

Calculation GSM k max = 3 (fm -1 ) Maximum momentum for continuum: Re. k Imag. k Re. k Imag. k Continuum Pole : 0p 3/2

Shell model COSM Preparation of s.p. completeness relation: Diagonalize the s.p. Hamiltonian by using complex scaling method (CSM) CSM: Resonant poles No explicit path for continua Comparison between the COSM w.f. and GSM w.f.. Re. E Imag. E  (Products of s.p.w.f.) (Gaussian w.f.) H. M, K. Kato and K. Ikeda, PRC75, (2007) Components of the poles continua

Results Ground state energy: E(6He: 0 + ) GSMCOSM (B:Reduced)L max          

Ground state energy: E(6He: 0 + )

Results Ground state energy: E(6He: 0 + ) GSMCOSM (B:Reduced)L max COSM (A: Full)               

Ground state energy: E(6He: 0 + ) More bound

Ground state energy: E(6He: 0 + )

Results Pole contribution: (0p 3/2 ) 2 COSM (A: Full) GSMCOSM (B:Reduced)L max               

Pole contribution: (0p 3/2 ) 2c Real partImaginary part

Density distribution for valence neutron:

Why do we have the difference?

Treatment (discretization) of the continuum GSM Re. k Imag. k COSM Gaussian basis function Non-discretized continuum (Fourier trans.) Discretized continuum

Non-discretized continuum To illustrate…

Summary COSM approach –J-Scheme and M-Scheme COSM have been performed. –Rrms of 24 O is not reproduced only by changing the NN- interaction/ Continuum coupling in COSM –COSM and GSM give almost the same feature for the coupling. However, the difference appears in the higher partial waves (pure continuum states). Discretization of the continuum is the key. (Same kind of discussion has been done in the CDCC approach.)