External Sorting Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.

Slides:



Advertisements
Similar presentations
External sorting R & G – Chapter 13 Brian Cooper Yahoo! Research.
Advertisements

External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
CMU SCS Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications C. Faloutsos – A. Pavlo Lecture#12: External Sorting.
Equality Join R X R.A=S.B S : : Relation R M PagesN Pages Relation S Pr records per page Ps records per page.
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 14, Part B.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
External Sorting “There it was, hidden in alphabetical order.” Rita Holt R&G Chapter 13.
External Sorting CS634 Lecture 10, Mar 5, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 11 External Sorting.
Midterm Review Spring Overview Sorting Hashing Selections Joins.
External Sorting R & G Chapter 13 One of the advantages of being
External Sorting R & G Chapter 11 One of the advantages of being disorderly is that one is constantly making exciting discoveries. A. A. Milne.
CS 4432lecture #31 CS4432: Database Systems II Lecture #3 Professor Elke A. Rundensteiner.
Query Processing 1: Joins and Sorting R&G, Chapters 12, 13, 14 Lecture 8 One of the advantages of being disorderly is that one is constantly making exciting.
Query Optimization 3 Cost Estimation R&G, Chapters 12, 13, 14 Lecture 15.
6/27/20151 PSU’s CS External Sorting  Motivation  2-way External Sort: Memory, passes,cost  General External Sort: Memory, passes, cost  Optimizations.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
External Sorting 198:541. Why Sort?  A classic problem in computer science!  Data requested in sorted order e.g., find students in increasing gpa order.
1 External Sorting for Query Processing Yanlei Diao UMass Amherst Feb 27, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
CS 4432query processing - lecture 171 CS4432: Database Systems II Lecture #17 Join Processing Algorithms (cont). Professor Elke A. Rundensteiner.
External Sorting Chapter 13.. Why Sort? A classic problem in computer science! Data requested in sorted order  e.g., find students in increasing gpa.
Query Processing 2: Sorting & Joins
BTrees & Sorting 11/3. Announcements I hope you had a great Halloween. Regrade requests were due a few minutes ago…
©Silberschatz, Korth and Sudarshan13.1Database System Concepts Chapter 13: Query Processing Overview Measures of Query Cost Selection Operation Sorting.
Sorting.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and Chapter 11 (Sec ): G-M et al. (R2) OR.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13: Ramakrishnan & Gherke and Chapter 2.3: Garcia-Molina et al.
1 External Sorting. 2 Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing gpa order.
1 Database Systems ( 資料庫系統 ) December 7, 2011 Lecture #11.
ZA classic problem in computer science! zData requested in sorted order ye.g., find students in increasing cap order zSorting is used in many applications.
B+ Trees: An IO-Aware Index Structure Lecture 13.
Introduction to Database Systems1 External Sorting Query Processing: Topic 0.
Relational Operator Evaluation. overview Projection Two steps –Remove unwanted attributes –Eliminate any duplicate tuples The expensive part is removing.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapters 13: 13.1—13.5.
CPSC Why do we need Sorting? 2.Complexities of few sorting algorithms ? 3.2-Way Sort 1.2-way external merge sort 2.Cost associated with external.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
External Sorting. Why Sort? A classic problem in computer science! Data requested in sorted order –e.g., find students in increasing gpa order Sorting.
CS 405G: Introduction to Database Systems Instructor: Jinze Liu Fall 2007.
What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently and safely. Provide.
1 Lecture 16: Data Storage Wednesday, November 6, 2006.
Database Systems (資料庫系統)
External Sorting Chapter 13
External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and
Database Applications (15-415) DBMS Internals- Part VI Lecture 18, Mar 25, 2018 Mohammad Hammoud.
Database Management Systems (CS 564)
Lecture#12: External Sorting (R&G, Ch13)
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
External Sorting Chapter 13
Selected Topics: External Sorting, Join Algorithms, …
CS222P: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
Lecture 28: Index 3 B+ Trees
CS222: Principles of Data Management Lecture #10 External Sorting
CS505: Intermediate Topics in Database Systems
General External Merge Sort
External Sorting.
Sorting We may build an index on the relation, and then use the index to read the relation in sorted order. May lead to one disk block access for each.
CS222P: Principles of Data Management Lecture #10 External Sorting
Database Systems (資料庫系統)
EECS 647: Introduction to Database Systems
External Sorting Chapter 13
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
External Sorting Dina Said
CSE 190D Database System Implementation
Presentation transcript:

External Sorting Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides

Why Sort? A classic problem in computer science! Data requested in sorted order  e.g., find students in increasing gpa order First step in bulk loading B+ tree index. Useful for eliminating duplicates (Why?) Useful for summarizing groups of tuples Sort-merge join algorithm involves sorting. Problem: sort 100Gb of data with 1Gb of RAM.  why not virtual memory?

2-Way Sort: Requires 3 Buffers Pass 0: Read a page, sort it, write it.  only one buffer page is used.  each sorted page (or subfiles) is called a run. Pass 1, 2, 3, …, etc.:  requires 3 buffer pages  merge pairs of runs into runs twice as long  three buffer pages used. Main memory buffers INPUT 1 INPUT 2 OUTPUT Disk Merging Runs

Two-Way External Merge Sort Each pass we read + write each page in file. N pages in the file => the number of passes So total cost is: Idea: Divide and conquer: sort subfiles and merge Input file 1-page runs 2-page runs 4-page runs 8-page runs PASS 0 PASS 1 PASS 2 PASS 3 9 3,4 6,2 9,48,75,63,1 2 3,45,62,64,97,8 1,32 2,3 4,6 4,7 8,9 1,3 5,62 2,3 4,4 6,7 8,9 1,2 3,5 6 1,2 2,3 3,4 4,5 6,6 7,8

Merging Runs General External Merge Sort To sort a file with N pages using B buffer pages:  Pass 0: use B buffer pages. Produce sorted runs of B pages each.  Pass 1, 2, …, etc.: merge B-1 runs. B Main memory buffers INPUT 1 INPUT B-1 OUTPUT Disk INPUT 2... * More than 3 buffer pages. How can we utilize them?

Cost of External Merge Sort Number of passes: Cost = 2N * (# of passes) E.g., with 5 buffer pages, to sort 108 page file:  Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages)  Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages)  Pass 2: 2 sorted runs, 80 pages and 28 pages  Pass 3: Sorted file of 108 pages Formula check: ┌ log 4 22 ┐ = 3 … + 1  4 passes √

Number of Passes of External Sort ( I/O cost is 2N times number of passes)

Blocked I/O for External Merge Sort Do I/O a page at a time  Not one I/O per record In fact, read a block (chunk) of pages sequentially! Suggests we should make each buffer (input/output) be a block of pages.  But this will reduce fan-in during merge passes!  In practice, most files still sorted in 2-3 passes. Theme: Amortize a random I/O across more data read. But pay for it in memory footprint

Double Buffering Goal: reduce wait time for I/O requests during merge Idea: 2 blocks RAM per run, disk reader fills one while sort merges the other  Potentially, more passes; in practice, most files still sorted in 2-3 passes. OUTPUT OUTPUT' Disk INPUT 1 INPUT k INPUT 2 INPUT 1' INPUT 2' INPUT k' block size b B main memory buffers, k-way merge Theme: overlap I/O and CPU activity via read-ahead (prefetching)

Using B+ Trees for Sorting Scenario: Table to be sorted has B+ tree index on sorting column(s). Idea: Can retrieve records in order by traversing leaf pages. Is this a good idea? Cases to consider:  B+ tree is clustered  B+ tree is not clustered Good idea! Could be a very bad idea!

Clustered B+ Tree Used for Sorting Cost: root to the left-most leaf, then retrieve all leaf pages (Alternative 1) If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once. * Always better than external sorting! (Directs search) Data Records Index Data Entries ("Sequence set")

Unclustered B+ Tree Used for Sorting Alternative (2) for data entries; each data entry contains rid of a data record. In general, one I/O per data record! (Directs search) Data Records Index Data Entries ("Sequence set")

Cost of External Sorting vs. Unclustered Index * p: number of records per page * B=1,000 and block size=32 for sorting * p=100 is the more realistic value. N: number of pages of records

Summary External sorting is important External merge sort minimizes disk I/O cost:  Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.  # of runs merged at a time depends on B, and block size.  Larger block size means less I/O cost per page.  Larger block size means smaller # runs merged.  In practice, # of runs rarely more than 2 or 3.

Summary, cont. Choice of internal sort algorithm may matter:  Quicksort: Quick!  Heap/tournament sort The best sorts are wildly fast:  Despite 40+ years of research, still improving! Clustered B+ tree is good for sorting; unclustered tree is usually very bad.