WG1 NuFact04, Osaka, July 27 2004 Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.

Slides:



Advertisements
Similar presentations
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany CAST Collaboration Meeting, May 2008, Paris, FranceTitle Georg Raffelt, Max-Planck-Institut.
Advertisements

Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
Planck 2013 results, implications for cosmology
Summary of GT3: « Neutrinos in the Universe » Participants: Dominique Boutigny Dominique Duchesneau José Busto Paschal Coyle Sacha Davidson Philippe Gorodetzky.
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Particle Physics and Cosmology cosmological neutrino abundance.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Neutrinos and the large scale structure
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University COSMO, 14 SEPTEMBER 2012 e    
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
夏陽 悉尼大学悉尼天文研究所 2015 年 9 月 14 日 中国科学院卡弗里理论物理研究所 宇宙中微子.
The Cosmological Energy Density of Neutrinos from Oscillation Measurements Kev Abazajian Fermilab June 10, 2003 NuFact 03 – Fifth International Workshop.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
C. W. Kim KIAS The Johns Hopkins University Neutrino Physics and Cosmology SDSS-KSG Workshop.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
NEUTRINO PHYSICS FROM COSMOLOGY e     STEEN HANNESTAD, SDU HEP2003, 18 JULY 2003 e  
Does WMAP data constrain the lepton asymmetry of the Universe to be zero? M. Lattanzi*, R. Ruffini, G.V. Vereshchagin Dip. di Fisica - Università di Roma.
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
1 Neutrino properties from cosmological measurements Cosmorenata June’13 Olga Mena IFIC-CSIC/UV.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Cosmological mass bounds on hot-dark matter axions Alessandro MIRIZZI (MPI, Munich) NOW Neutrino Oscillation Workshop Conca Specchiulla, September.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Small scale modifications to the power spectrum and 21 cm observations Kathryn Zurek University of Wisconsin, Madison.
The Cosmic Microwave Background
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
3 astrophysical measurements of neutrino mass Neutrino mass will tend to wash out intermediate scale structure during galaxy formation. Thus the presence.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
PRECISION COSMOLOGY AND NEW PHYSICS STEEN HANNESTAD, AARHUS UNIVERSITY NExT, SOUTHAMPTON, 27 NOVEMBER 2013.
Cheng Zhao Supervisor: Charling Tao
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Neutrino Masses in Cosmology
Precision cosmology and neutrinos
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν

Current bounds and future sensitivities Relic neutrinos Effect of neutrino mass on cosmological observables NEUTRINO MASS AND COSMOLOGY

Current bounds and future sensitivities Relic neutrinos Effect of neutrino mass on cosmological observables NEUTRINO MASS AND COSMOLOGY

Neutrinos in equilibrium f ν (p,T)=f FD (p,T) Standard Relic Neutrinos

T ν = T e = T γ 1 MeV  T  m μ Neutrinos in Equilibrium

Neutrino decoupling

Decoupled Neutrinos f ν (p)=f FD (p,T ν ) T dec ( ν e ) ~ 2.3 MeV T dec ( ν μ,τ ) ~ 3.5 MeV Neutrino decoupling

At T~m e, electron-positron pairs annihilate heating photons but not the decoupled neutrinos Decoupled neutrinos stream freely until non-relativistic Neutrino and Photon temperatures

Number density Energy density The Cosmic Neutrino Background Massless Massive m ν >>T

Neutrinos and Cosmology Neutrinos influence several cosmological scenarios Primordial Nucleosynthesis BBN Cosmic Microwave Background CMB Formation of Large Scale Structures LSS T~MeVT<eV ν e vs ν μ,τ N ν No flavor sensitivity N ν & m ν

Primordial Nucleosynthesis: allowed ranges for N eff Cuoco et al astro-ph/ Using 4 He + D data (2σ) Baryon abundance

Current bounds and future sensitivities Relic neutrinos Effect of neutrino mass on cosmological observables NEUTRINO MASS AND COSMOLOGY

CMB DATA: FIRST YEAR WMAP vs COBE

Map of CMBR temperature Fluctuations Multipole Expansion CMB DATA: INCREASING PRECISION Angular Power Spectrum

Power Spectrum of density fluctuations Galaxy Surveys CMB experiments SDSS

Galaxy Surveys 2dFGRSSDSS

2dFGRS Galaxy Survey ~ 1300 Mpc

Power spectrum of density fluctuations Bias b 2 (k)=P g (k)/P m (k) Non-linearity 2dFGRS k max SDSS

Neutrinos as Dark Matter Neutrinos are natural DM candidates They stream freely until non-relativistic (collisionless phase mixing) Neutrinos are HOT Dark Matter First structures to be formed when Universe became matter -dominated Ruled out by structure formation CDM Neutrino Free Streaming  b, cdm

Neutrinos as Dark Matter Neutrinos are natural DM candidates They stream freely until non-relativistic (collisionless phase mixing) Neutrinos are HOT Dark Matter First structures to be formed when Universe became matter -dominated HDM ruled out by structure formation CDM

Neutrinos as Hot Dark Matter W. Hu Effect of Massive Neutrinos: suppression of Power at small scales Massive Neutrinos can still be subdominant DM: limits on m ν from Structure Formation

Effect of massive neutrinos on the CMB and Matter Power Spectra Max Tegmark’s homepage

Current bounds and future sensitivities Relic neutrinos Effect of neutrino mass on cosmological observables NEUTRINO MASS AND COSMOLOGY

Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! Different analyses have found upper bounds on neutrino masses, but they depend on The assumed cosmological model: number of parameters (problem of parameter degeneracies) The combination of cosmological data used

Cosmological Parameters: example SDSS Coll PRD 69 (2004)

Cosmological Data CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI,ACBAR,VSA…) CMB Polarization: WMAP Large Scale Structure: * Galaxy Clustering (2dF,SDSS) * Bias (Galaxy, …): Amplitude of the Matter P(k) (SDSS,σ 8 ) * Lyman-α forest: independent measurement of power on small scales Priors on parameters from other data: SNIa (Ω m ), HST (h), …

Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! Different analyses have found upper bounds on neutrino masses, but they depend on The assumed cosmological model: number of parameters (problem of parameter degeneracies) The combination of cosmological data used WMAP data is consistent with ν’ s being all the DM ( Σm ν < 13 eV ). The WMAP bound on Σm ν is a VERY weak bound ! SDSS Coll PRD 69 (2004)

Absolute mass scale searches Cosmology < eV Tritium beta decay < 2.3 eV Neutrinoless double beta decay < eV

3 degenerate massive neutrinos Σm ν = 3m 0` Neutrino masses in 3-neutrino schemes eV From present evidences of atmospheric and solar neutrino oscillations atm solar eV m0m0

Neutrino masses in 3-neutrino schemes

WMAP+CBI+ACBAR+2dFGRS+σ 8 +Lyman α Spergel et al ApJ. Suppl.148 (2003) 175 Σm ν < 0.7 eV Ω ν h 2 < m 0 < 0.23 eV 95% CL 3 degenerate massive neutrinos Bound on m ν after first year WMAP data More conservative Σm ν < 1.01 eV Including also SDSS Σm ν < 0.75 eV Hannestad JCAP 0305 (2003) 004 Elgarøy & Lahav JCAP 0305 (2003) 004 Barger et al, PLB 595 (2004) 55

Cosmological bounds on neutrino mass (2003/04) Bound on Σm ν (eV) at 95% CL Data used WMAP Coll. ApJ Suppl 148 (2003) WMAP, other CMB, 2dF, σ 8(a), HST Hannestad JCAP 0305 (2003) WMAP, other CMB, 2dF, HST Allen, Smith & Bridle MNRAS 346 (2003) 593 WMAP, other CMB, 2dF, σ 8(b), X-ray galaxy cluster SDSS Coll. PRD 69 (2004) WMAP, SDSS Barger. Marfatia & Tregre PLB 595 (2004) WMAP, other CMB, 2dF, SDSS, HST Crotty, Lesgourgues & SP PRD 69 (2004) (0.6) WMAP, other CMB, 2dF, SDSS (HST) Seljak et al. astro-ph/ WMAP, SDSS (bias, galaxy clustering, Ly-α)

Neutrino masses in 3-neutrino schemes Currently disfavored

The real bound depends on the number of neutrinos Example: in the 3+1 scenario, there are 4 neutrinos (including thermalized sterile) Calculate the bounds with N ν > 3 Abazajian 2002, di Bari 2002 Hannestad JCAP 0305 (2003) 004 (also Elgarøy & Lahav, JCAP 0304 (2003) 004) 3 ν 4 ν 5 ν Hannestad 95% CL WMAP + Other CMB + 2dF + HST + SN-Ia

Σm ν and N eff degeneracy (0 eV,3) (0 eV,7) (2.25 eV,7)

Analysis with Σm ν and N eff free Hannestad & Raffelt, JCAP 0404 (2004) 008 Crotty, Lesgourgues & SP, PRD 69 (2004) σ upper bound on Σm ν WMAP + ACBAR + SDSS + 2dF Previous + priors (HST + SN-Ia)

Future sensitivities to Σm ν Next CMB data from WMAP and PLANCK (+other CMB experiments on large l’s) temperature and polarization spectra SDSS galaxy survey: 10 6 galaxies (250,000 for 2dF) Forecast analysis in WMAP and Ω Λ =0 models Hu et al, PRL 80 (1998) 5255 Sensitivity to With current best-fit values

Analysis of future bounds on Σm ν Forecast analysis calculating the Fisher matrix F ij CMB part + Galaxy Survey part Veff ~ effective volume of the galaxy survey Estimator of the error on parameter θ i Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) = (0.0245, 0.148, 0.70, 0.98, 0.12, 0.12 eV )

PLANCK+SDSS Ideal CMB+40xSDSS Lesgourgues, SP & Perotto, hep-ph/ (PRD)

Analysis of future sensitivities on Σm ν : summary Σm detectable at 2σ if larger than 0.21 eV (PLANCK+SDSS) 0.13 eV (CMBpol+SDSS) 0.07 eV (ideal+40xSDSS) measure absolute ν mass scale !!!

Future sensitivities to Σm ν : new ideas galaxy weak lensing and CMB lensing no bias uncertainty small scales in linear regime makes CMB sensitive to much smaller masses

Future sensitivities to Σm ν : new ideas galaxy weak lensing and CMB lensing sensitivity of future weak lensing survey (4000º) 2 to m ν σ(m ν ) ~ 0.1 eV Abazajian & Dodelson PRL 91 (2003) sensitivity of CMB (primary + lensing) to m ν σ(m ν ) = 0.15 eV (Planck) σ(m ν ) = 0.04 eV (CMBpol) Kaplinghat, Knox & Song PRL 91 (2003)

Cosmological observables efficiently constrain some properties of (relic) neutrinos Bounds on the sum of neutrino masses from CMB + 2dFGRS or SDSS, and other cosmological data (best Σm ν <0.42 eV, conservative Σm ν <1 eV) Conclusions Sub-eV sensitivity in the next future ( eV and better)  Test degenerate mass region and eventually the IH case ν