Prof. Peter Mustermann | Institut xxxxx | www.hzdr.de Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de Investigation of ceramic.

Slides:



Advertisements
Similar presentations
Wang Yi, Tsinghua University SoLID collaboration meeting, Status of MRPC-TOF 1 Wang Yi Department of Engineering Physics Tsinghua University,
Advertisements

Development of high rate RPCs Lei Xia Argonne National Laboratory.
E/π identification and position resolution of high granularity single sided TRD prototype M. Târzilă, V. Aprodu, D. Bartoş, A. Bercuci, V. Cătănescu, F.
1 MRPC detector as polarimeter for dEDM Characteristic of detector Time Resolution Electronics Possible R&D Plans D. Babusci, A. Ferrari, P. Levi Sandri,
Development of timing RPCs Presented by P.Fonte for the TOF-RPC group.
Status of MRPC-TOF Wang Yi Department of Engineering Physics Tsinghua University, Beijing, China 1.
Progress report NeuLAND Outline Short reminder about NeuLAND Timing RPC concept Open questions - Impedance matching RPC prototype at GSI Next steps Collaboration.
Preparation of MTD production Yongjie Sun Center of Particle Physics and Technology University of Science and Technology of China.
Particle Identification in CBM ● Geometry and acceptance at 25 AGeV ● Hadron identification - TOF performance - Matching to the Silicon Tracker ● Summary.
New MRPC prototypes developed in Tsinghua Unversity Huangshan Chen (Tsinghua Unversity)
Mauro Raggi Status report on the new charged hodoscope for P326 Mauro Raggi for the HODO working group Perugia – Firenze 07/09/2005.
November 5, 2004V.Ammosov ITEP-Moscow, Russian CBM meeting 1 IHEP possible participation in CBM TOF system Vladimir Ammosov Institute for High Energy Physics.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
15 th CBM collaboration meeting, GSI, Darmstadt, Germany, April 12-16, 2010Wang Yi, Tsinghua University R&D status of low resistive glass and high rate.
Monte Carlo Comparison of RPCs and Liquid Scintillator R. Ray 5/14/04  RPCs with 1-dimensional readout (generated by RR) and liquid scintillator with.
Status of Projectile Spectator Detector A.Kurepin (Institute for Nuclear Research, Moscow) I. Introduction to PSD. II. Conception and design. III. Development.
Muon Detector Jiawen ZHANG Introduction The Detector Choices Simulation The structure and detector design The Expected performance Schedule.
RPC Development in Beijing and Potential for NO A Tianchi Zhao University of Washington May 16, 2005.
Third workshop on hadron physics in ChinaWang Yi, Tsinghua University A conceptional design of SOLID-TOF Outline: Development of low resistive glass and.
RPC detection rate capability ≈ 1/ρ Float-Glass ( Ω-cm) RPC rate capability < Bakelite( Ω-cm) one. New kind of doped glass was developed.
Prototypes of high rate MRPC for CBM TOF Jingbo Wang Department of Engineering Physics, Tsinghua University, Beijing, China RPC-2010-Darmstadt, Germany.
STAR regional meeting, October UniversityWang Yi, Tsinghua University New MRPC R&D in Tsinghua University Outline: Introduction of MRPC.
RPCs of BESIII Muon Identifier  BESIII and muon identifier  R&D  Mass production  Installation Zhang Qingmin Advisor: Zhang Jiawen.
Preliminary results of a detailed study on the discharge probability for a triple-GEM detector at PSI G. Bencivenni, A. Cardini, P. de Simone, F. Murtas.
M. Bianco On behalf of the ATLAS Collaboration
Mariana Petris, CBM Collaboration Meeting, October 13-18, 2008, Dubna Mariana Petris, NIPNE - Bucharest C B M In-Beam Test Results of the Pestov Glass.
Proposal for large-area high- rate Time-of-Flight and Muon Telescope Detector with MRPC technology for EIC Zhangbu Xu (BNL) BNL, Rice, UCLA, Tsinghua,
Report on beam test results of high-rate MRPCs Jingbo Wang Department of Engineering Physics, Tsinghua University, Beijing, China.
RPC upgrade for the HADES Tracking: MDC e -,e + identification with RICH- TOF/PreShower  0.4 GeV/c TOF is not sufficient- Pre-Shower p,  identification.
长读出条 MRPC 性能研究 孙勇杰 Key Laboratory of Technology of Particle Detection and Electronics, USTC-IHEP, CAS Center of Particle Physics and Technology, USTC.
RPC Design Studies Gabriel Stoicea, NIPNE-HH, Bucharest CBM Software Week GSI-Darmstadt May 10, 2004.
The LHCb Muon System and LAPE Participation Burkhard Schmidt CERN - EP/LHB Presented at the CNPq Workshop Rio de Janeiro, 12 January 1999.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
ITEP participation to the CBM TOF project ITEP ALICE - TOF group CBM – Russia meeting at ITEP, Nov 5 th, 2004.
Proportional chambers with cathode readout in high particle flux environment Michał Dziewiecki.
Module-0 of AFP ToF Detector Libor Nozka on behalf of ATLAS Forward Proton Group Palacky University 1.
CBM-TOF-FEE Jochen Frühauf, GSI Picosecond-TDC-Meeting.
Gas detectors in a ZDC (at LHC) Edwin Norbeck and Yasar Onel University of Iowa For7 th CMS Heavy-Ion meeting at Delphi June 2003.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
1 ADAMAS Dec 2012 Piotr Koczoń,GSI Start Detector for - observation - simulation - realisation P.Koczoń / DetLab GSI Helmholtzzentrum für.
Ingo DeppnerDPG-Frühjahrstagung, Darmstadt, März Outline: CBM-ToF requirements What is an (M)RPC? Tof wall arrangements Ceramics RPC and.
NSS2006Shengli Huang1 The Time of Flight Detector Upgrade at PHENIX Shengli Huang PHENIX Collaboration Outlines: 1.Physics motivations 2.Multi-gap Resistive.
International Conference on Science and Technology for FAIR in Europe 2014 APPA Cave Instrumentation for Plasma Physics Vincent Bagnoud, GSI and Helmholtz.
XI Workshop on Resistive Plate Chambers and Related Detectors, INFN, 5-10 February, Aging test of high rate MRPC Wang Yi Department of Engineering.
SHIP calorimeters at test beam I. KorolkoFebruary 2016.
Beam detectors in Au+Au run and future developments - Results of Aug 2012 Au+Au test – radiation damage - scCVD diamond detector with strip metalization.
Prospect of SiPM application to TOF in PANDA
eTOF - status and plan CBM-STAR joint Workshop Outline Introduction
High rate time of flight system
Performance studies of a single HV stack MRPC prototype for CBM
Department of Engineering Physics, Tsinghua University, Beijing, China
Beam detectors performance during the Au+Au runs in HADES
Results achieved so far to improve the RPC rate capability
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Performance of timing-RPC prototypes with relativistic heavy ions
Sensitivity of Hybrid Resistive Plate Chambers to Low-Energy Neutrons
Start Detector for pion experiments
Saikat Biswas, A. Abuhoza, U. Frankenfeld, C. Garabatos,
A heavy-ion experiment at the future facility at GSI
CMS muon detectors and muon system performance
Multigap Resistive Plate Chambers (MRPC)
of secondary light ion beams
Conceptual design of TOF and beam test results
MRPC -High Time Resolution Detector R&D at USTC CHINA Chen, Hongfang 2001/Oct. Oct.2001, Beijing MRPC,USTC.
Performance of a Multigap RPC prototype for the LHCb Muon System
Update on SoLID-TOF Wang Yi Outline: Conceptual design of SoLID-TOF
GEANT Simulations and Track Reconstruction
11th Pisa meeting on advanced detectors
High time resolution TOF for SoLID
Development of Resistive Plate Chamber for charge particle detection
Presentation transcript:

Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Investigation of ceramic based Resistive Plate Chambers for high rate beam environments

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 2 Outline 1.The Beam Fragmentation T 0 Counter for CBM 2.Ceramics RPC for radiation harsh environment 3.High rate test of Ceramics RPC for the BFT 0 C

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 3 Beam Fragmentation T 0 Counter Important scopes of High Energy Heavy Ion experiments are the start-time and the reaction-plane determination. For CBM the use of RPC for the Beam Fragmentation T 0 Counter (BFT 0 C) with low resistive radiation hard ceramics electrodes and small chess- board like single cells is under consideration.

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 4 Beam Fragmentation T 0 Counter Compressed Baryonic Matter Spectrometer Beam Fragmentation T 0 Counter (BFT 0 C): o Start-time T 0 o Reaction plane Time of Flight Wall o Stop-time Ion Beam Target

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 5 Beam Fragmentation T 0 Counter Particle flux (UrQMD) 6 m behind the target on the BFT 0 C Au 10 GeV Au Target horizontal vertical 1000 kHz/cm² 100 kHz/cm² 10 kHz/cm² Beam Fragmentation T 0 Counter (BFT 0 C): o Start-time T 0 o Reaction plane Time of Flight Wall o Stop-time spectator region

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 6 Beam Fragmentation T 0 Counter Hit probability (UrQMD) 6 m behind the target Au 10 GeV Beam Fragmentation T 0 Counter (BFT 0 C): o Start-time T 0 o Reaction plane Time of Flight Wall o Stop-time spectator region Au Target

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 7 Beam Fragmentation T 0 Counter Challenges of the BFT 0 C region: High-rate capability up to ≥ 2x10 5 cm - ²∙s -1 → one floating electrode per cell Timing resolution: Ϭ ≤ 60 ps Efficiency: ≥ 98 % Double-hit suppression: ≤ 2 % → cell size 20x20 mm 2 Cross-talk suppression: ≤ % → RPC with low resistive ceramics electrodes and chess- board like single cell design are under consideration

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 8 Beam Fragmentation T 0 Counter BFT 0 C design 1200 mm 24 mm 400 mm 1 module 400 RPC BFT 0 C = 8 modules 1 RPC 3 cells 1 cell 2 gaps

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 9 polished surface Reduction of dark rate: o Surface roughness: - Si 3 N 4 /SiC sub-µm - Cr-layer on Al 2 O 3 ≤ 50 nm o Rogowski shaped edges o Spacers: Al 2 O 3 outside the active cell area → 0.5 Hz/cm 2 Ceramics for RPC Rogowski shaped edges

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 10 Si 3 N 4 /SiC resistive electrode shaped both sides Al 2 O 3 evaporated with Cu/Cr Al 2 O µm spacers Ceramics for RPC Metal-paste contact

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 11 Ceramics for RPC RPC design: active area 20x20 mm 2 ; 6 gaps 250 μm Si 3 N 4 /SiC resistive electrodes mCRPC0 – 2x10 10 Ω cm mCRPC1 – 3x10 9 Ω cm mCRPC2 – 5x10 8 Ω cm mCRPC3 – 7x10 9 Ω cm 1 RPC 3 cells

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 12 RPC gas mixture Intense discharges combined with isobutane provokes whisker generation at Cr-surface → No isobutan! Gas-mixture for RPC: 90% Freon + 10% SF 6

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 13 S1 S2 S14S13 4 S11S4S3 e-Beam 30 MeV RPC RPC test ELBE (electrons) monoenergetic, single electrons energy 30 MeV pulse duration 5 ps flux ≤ 500 kHz/cm 2 Gas: 90% Freon + 10% SF 6 Electronics: MAX3760 Start system: Ϭ RF = 35 ps Trigger scint. size: 5x5 to 20x20 mm 2

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 14 RPC test - electrons MC – geometry scintillators mRPC 2x10 10 Ω cm: ε fast degrease with flux 5x10 8 Ω cm: ε is not capable to get on the efficiency plateau: unstable work and lots of streamers starting from kV/cm 10 9 Ω cm: most suitable resistivity order for our aims

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 15 RPC test - electrons For all probes (0,1,3) the time resolution remains between 90 ps and 110 ps below the flux of 7x10 4 cm - ²s -1 For probes (1,3) no data exists above 7x10 4 cm - ²s -1 due to DAQ problems at higher rates For probe (0) with 2x10 10 Ω cm in correlation with the steep efficiency drop below 90 % beginning from 4x10 4 cm - ²s -1 the time resolution is rising and amounts to 150 ps at 1.6x10 5 cm - ²s -1

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 16 Beamline: T10 Pion rate: few kHz/cm 2 Gas: 90% Freon + 10% SF 6 Electronics: MAX Trigger scint. size: 20x20 mm 2 Start system: Ϭ RF = 50 ps RPC test CERN (pions)

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 17 Pion efficiency ε ≈ 98 % about 3% higher than for 30 MeV electrons Time resolution Ϭ ≈ 90 ps comparable with electron results RPC CERN (pions) Ϭ = 100 ps ε = 98 %

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 18 A Beam Fragmentation T 0 Counter of 120x120 cm 2 in the innermost region of the CBM TOF wall with 2x2 cm 2 chess-board like single RPC cells is under consideration. Radiation hard low resistive Si 3 N 4 /SiC composite is a candidate for the floating electrodes of the RPC cells. A manufacturing process has been developed to produce ceramic electrodes with a bulk resistivity varying between 10 8 and Ω cm. The outer electrodes are Cr-plated Al 2 O 3 sheets with a central contact pin. The dark count rate has been reduced to 0.5 Hz/cm 2 by special material treatments. To define the bulk resistivity, four RPC cells of different bulk resistivity have been investigated Ω cm is the most suitable resistivity order for our aims. RPC tests with relativistic electron and pion beam fluxes of up to 2x10 5 cm -2 s -1 have been provided. The detection efficiency amounts to 98 % and is sufficient for CBM, while the time resolution amounts to 90 ps and needs still further improvement. Summary

Dr. Lothar Naumann I I Institut of Radiation Physics I Mitglied der Helmholtz-Gemeinschaft Seite 19 Precise scan of the bulk resistivity in order to determine the optimal value with an acceptable values margin Assembling of eight RPC with following bulk resistivity's in a mini-module: 1 ch. 1.4x10 9 ; 2 ch. 3.8x10 9 ; 2 ch. 4.2x10 9 ; 1 ch. 6.6x10 9 ; 1 ch. 8.2x10 9 and 1 ch. 9.4x10 9 Ω cm Estimation of the streamer excitation Implementation of PADI-FEE Radiation hardness test of powered RPC cells with fast neutrons Start of the Si 3 N 4 /SiC ceramics composite production of 10 m 2 for all BFT0C-modules Outlook

Prof. Peter Mustermann | Institut xxxxx | Seite 20 Dr. Lothar Naumann | Institute of Radiation Physics | Acknowledgment: HZDR - Dresden/Germany: X. Fan, B. Kämpfer, R. Kotte, A. Laso Garcia, D. Stach HIJ - Jena/Germany: J. Dreyer ITEP - Moscow/Russia: A. Akindinov, D. Malkevich, A. Nedosekin, V. Plotnikov, R. Sultanov, K. Voloshin