Presentation is loading. Please wait.

Presentation is loading. Please wait.

Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B.

Similar presentations


Presentation on theme: "Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B."— Presentation transcript:

1 Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B. Hu 3, O.N. Katsuro-Hopkins 1, B. LeBlanc 2, J. Levesque 1, J.E. Menard 2, J. Manickam 2, K. Tritz 4 1 Department of Applied Physics, Columbia University, New York, NY, USA 2 Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA 3 University of Rochester, Rochester, NY, USA 4 Johns Hopkins University, Baltimore, MD, USA 50th Annual Meeting of the Division of Plasma Physics American Physical Society November 17, 2008 Dallas, TX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec NSTX Supported by v1.4

2 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 2 Research advances to understanding mode stabilization physics and reliably maintaining high beta plasmas  Outline  Active control of beta amplified n = 1 fields / global instabilities  Mode dynamics during control  Kinetic effects on RWM stabilization  T i influence on non-resonant magnetic braking RWM active stabilization coils RWM sensors (B p ) RWM sensors (B r ) Stabilizer plates

3 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 3 Active RWM control and error field correction maintain high  N plasma  n = 1 active, n = 3 DC control  n = 1 response ~ 1 ms < 1/  RWM   N /  N no-wall = 1.5 reached  best maintains    NSTX record pulse lengths  limited by magnet systems  n > 0 control first used as standard tool in 2008  Without control, plasma more susceptible to RWM growth, even at high    Disruption at   /2  ~ 8kHz near q = 2  Factor of 2 higher than marginal   with n = 3 magnetic braking 0 2 4 6 10 20 0 12 8 4 0 500 -500 NN  B pu,l n=1 (G) I A (A) 0.00.20.40.60.81.01.2 t (s) 129067 129283 n = 1 feedback n = 3 correction   /2  (kHz)  N >  N no-wall   maintained  N no-wall = 4 (DCON) With controlWithout control NP6.00082 Menard - Optimized EFC (Sabbagh, et al., PRL 97 (2006) 045004.)

4 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 4 Probability of long pulse and pulse increases significantly with active RWM control and error field correction  Standard H-mode operation shown  I p flat-top duration > 0.2s (> 60 RWM growth times) I p flat-top duration (s) Frequency distribution Control off (908 shots) Control on (114 shots) Control on Control off  Control allows pulse > 4   N averaged over I p flat-top

5 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 5 During n=1 feedback control, unstable RWM evolves into rotating global kink  B p n=1 (G) I A (kA)  B n=odd (G)  Bp n=1 (deg) RFA RFA reduced Mode rotation Co-NBI direction RWM 128496 t (s) 0.6060.6100.6140.618 0.5 0 0 10 20 300 200 100 0 10 0 -10 -0.5 -1.5  RWM unlocks without disruption  Kink either damps away, or saturates  Tearing mode appears after 10 RWM growth times; modes stabilize edge core 0.6080.6100.6120.6140.616 t (s) 128496 spin-up RWM kink Soft X-ray emission contours edge core filtered 1 < f(kHz) < 15

6 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 6  f (deg) mode locked mode rotating passive 45225290315 unstable stable Experiment  (1/s) Experimental RWM control performance consistent with theory  (1/s) NN DCON no-wall limit with- wall limit active control passive active feedback (reached) Experimental  N reached adv. controller (control off)(control on)  VALEN code with realistic sensor geometry, plasmas with reduced V   Feedback phase scan shows superior settings Katsuro-Hopkins JP6.00108 – adv. controllerBialek NP6.00103 – NSTX upgrade, ITER VAC02 results

7 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 7  Simple critical   threshold stability models or loss of torque balance do not describe experimental marginal stability  Kinetic modification to ideal MHD growth rate  Trapped and circulating ions, trapped electrons  Alfven dissipation at rational surfaces  Stability depends on  Integrated   profile: resonances in  W K (e.g. ion precession drift)  Particle collisionality Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental stability Trapped ion component of  W K (plasma integral) Energy integral collisionality   profile (enters through ExB frequency) Hu and Betti, Phys. Rev. Lett 93 (2004) 105002. Sontag, et al., Nucl. Fusion 47 (2007) 1005. precession driftbounce NP6.00101 Berkery

8 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 8 Kinetic modifications show decrease in RWM stability at relatively high V  – consistent with experiment  Variation of   away from marginal profile increases stability  Unstable region at low    Kinetic model also shows overall increase in stability as collisionality decreases Theoretical variation of   Marginally stable experimental profile 121083 /a/a   /   exp 2.0 1.0 0.2   /2  (kHz) NP6.00101 Berkery RWM stability vs. V  (contours of  w ) Im(  W K ) Re(  W K )   /   exp  w 2.0 1.0 0.2 unstable   /   exp experiment

9 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 9 Stronger non-resonant braking at increased T i  Observed non- resonant braking using n = 2 field  Li wall conditioning produces higher T i in experiment  Expect stronger neoclassical toroidal viscosity at higher T i (-d   /dt ~ T i 5/2   )  At braking onset, T i ratio 5/2 = (0.45/0.34) 5/2 ~ 2  Consistent with measured d   /dt in region of strongest damping Li wall no Li n = 2 braking 130720 130722 no lithium Li wall R = 1.37m I coil (kA)   (kHz) 0.0 -0.4 -0.8 4 2 0.4 0.3 0.1 0.2 t (s) 0.40.50.60.7 T i (keV) 0.91.11.31.5 -15 -10 -5 0 0 1 2 3 0.91.11.31.5 R(m) (T i ratio) 5/2 (1/   )(d   /dt) Li wall Damping profiles No Li 2x NTV theory: J-K. Park: GI1.00005 K. Shaing: JP6.00109

10 NSTX APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)November 17 th, 2008 10 Advances in global mode feedback control, kinetic stabilization physics and magnetic braking research  Active n = 1 control, DC n = 3 error field correction maintain high  N plasma over ideal  N no-wall limit for long pulse  Growing RWM converts to kink that stabilizes; can yield tearing mode  Active control performance compares well to theory  Significant  N increase expected for ITER with proposed internal coil  Kinetic modifications to ideal stability can reproduce behavior of observed RWM marginal stability vs. V   Simple critical rotation threshold models for RWM stability inadequate  Non-resonant V  braking increases with increased T i consistent with NTV  Braking observed using n = 2 applied field in 2008


Download ppt "Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B."

Similar presentations


Ads by Google