Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nervous System Notes Part 4. Neurons do not under go mitosis. Neurons are the largest cells in the human body. They can be up to 3 feet long. SOME MORE.

Similar presentations


Presentation on theme: "Nervous System Notes Part 4. Neurons do not under go mitosis. Neurons are the largest cells in the human body. They can be up to 3 feet long. SOME MORE."— Presentation transcript:

1 Nervous System Notes Part 4

2 Neurons do not under go mitosis. Neurons are the largest cells in the human body. They can be up to 3 feet long. SOME MORE INTERESTING NERVOUS SYSTEM FACTS Exercise is not just for muscles, studies show that regular exercise improves nervous system functions, especially brain functions.

3 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Functional Properties of Neurons  Irritability  Ability to respond to stimuli  Conductivity  Ability to transmit an impulse

4 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Impulses  Resting neuron  The plasma membrane at rest is polarized  Fewer positive ions are inside the cell than outside the cell  Depolarization  A stimulus depolarizes the neuron’s membrane  A depolarized membrane allows sodium (Na+) to flow inside the membrane  The exchange of ions initiates an action potential in the neuron

5 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Impulses Figure 7.9a–b

6 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Impulses  Action potential  If the action potential (nerve impulse) starts, it is propagated over the entire axon  Impulses travel faster when fibers have a myelin sheath

7 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Impulses Figure 7.9c–d

8 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Impulses  Repolarization  Potassium ions rush out of the neuron after sodium ions rush in, which repolarizes the membrane  The sodium-potassium pump, using ATP, restores the original configuration

9 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Nerve Impulses Figure 7.9e–f

10 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses  Impulses are able to cross the synapse to another nerve  Neurotransmitter is released from a nerve’s axon terminal  The dendrite of the next neuron has receptors that are stimulated by the neurotransmitter  An action potential is started in the dendrite

11 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Neurotrans- mitter is re- leased into synaptic cleft Neurotrans- mitter binds to receptor on receiving neuron’s membrane Vesicle fuses with plasma membrane Synaptic cleft Neurotransmitter molecules Ion channels Receiving neuron Transmitting neuron Receptor Neurotransmitter Na + Neurotransmitter broken down and released Ion channel opensIon channel closes

12 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 1 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron

13 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 2 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Vesicle fuses with plasma membrane Synaptic cleft Ion channels Receiving neuron Transmitting neuron

14 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 3 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Neurotrans- mitter is re- leased into synaptic cleft Vesicle fuses with plasma membrane Synaptic cleft Neurotransmitter molecules Ion channels Receiving neuron Transmitting neuron

15 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 4 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Neurotrans- mitter is re- leased into synaptic cleft Neurotrans- mitter binds to receptor on receiving neuron’s membrane Vesicle fuses with plasma membrane Synaptic cleft Neurotransmitter molecules Ion channels Receiving neuron Transmitting neuron

16 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 5 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Neurotrans- mitter is re- leased into synaptic cleft Neurotrans- mitter binds to receptor on receiving neuron’s membrane Vesicle fuses with plasma membrane Synaptic cleft Neurotransmitter molecules Ion channels Receiving neuron Transmitting neuron Receptor Neurotransmitter Na + Ion channel opens

17 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 6 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Neurotrans- mitter is re- leased into synaptic cleft Neurotrans- mitter binds to receptor on receiving neuron’s membrane Vesicle fuses with plasma membrane Synaptic cleft Neurotransmitter molecules Ion channels Receiving neuron Transmitting neuron Receptor Neurotransmitter Na + Neurotransmitter broken down and released Ion channel opensIon channel closes

18 Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings Transmission of a Signal at Synapses Figure 7.10, step 7 Axon terminal Vesicles Synaptic cleft Action potential arrives Synapse Axon of transmitting neuron Receiving neuron Neurotrans- mitter is re- leased into synaptic cleft Neurotrans- mitter binds to receptor on receiving neuron’s membrane Vesicle fuses with plasma membrane Synaptic cleft Neurotransmitter molecules Ion channels Receiving neuron Transmitting neuron Receptor Neurotransmitter Na + Neurotransmitter broken down and released Ion channel opensIon channel closes


Download ppt "Nervous System Notes Part 4. Neurons do not under go mitosis. Neurons are the largest cells in the human body. They can be up to 3 feet long. SOME MORE."

Similar presentations


Ads by Google