Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah.

Similar presentations


Presentation on theme: "Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah."— Presentation transcript:

1 Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah

2 Contents Motivation Anisotropic Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

3 Contents Motivation Anisotropic Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

4 What Blurs Seismic Images? Irregular acquisition geometry Bandwidth source wavelet Velocity errors Higher order phenomenon: Anisotropy

5 Anisotropic Imaging Ray-based anisotropic migration: Anisotropic velocity model Anisotropic wave-equation migration: ---Ristow et al, 1998 ---Han et al. 2003

6 Objective: High efficiency Improve image accuracy Develop 3-D anisotropic wave-equation migration method in orthorhombic model >78 wave propagator o

7 Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

8 General Wave Equation Wave equation in displacement U i : displacement component C ijkl : 4th-order stiffness tensor

9 Eigensystem Equation Polarization components of P-P, SV, and SH waves

10 Orthorhombic Anisotropic

11

12 Decoupled P plane Wave Motion Equations in (x,z) and (y,z) planes and

13 Decoupled P plane Wave Motion Equations in (x,z) and (y,z) planes and det

14 Dispersion Equations (x,z) plane (y,z) plane Thomsen’s Parameters

15

16 VTI: FFD algorithm

17 FFD Anisotropy Migration

18 How to Set Velocity and Anisotropy Parameters a & b : Optimization coefficients of Pade approximation for FD Velocity: Anisotropy:

19 0 5 Error % 090 Pade Approximation Comparison Angle

20 0 0.05 Error % 078 Pade Approximation Comparison Angle Beyond 78 within 0.02 %

21 Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

22 0.6 0 Kz Kx -0.30.3 Kx -0.30.3 Weak Anisotropy Strong Anisotropy Exact ** Approximation ** Approximation

23 0.3 0 Kz Kx-0.30.3 Dispersion Equation Approximation Strong anisotropy

24 0 2.0 Depth (km) V/V0=3 iso New Standard

25 0 2.0 Depth (km) V/V0=3 Weak Aniso Strong Aniso

26 Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

27 0 0 1 Depth (km) 1.5 X (km) Velocity (2.0-3.0 km/s)

28 0 0 1 Time (s) 1.5 X (km) Velocity (2.0-3.0 km/s) 01.5 Anisotropic data (SUSYNLVFTI) 0 1.2 Time (s) X (km) Isotropic data (SUSYNLY)

29 0 0 1 Depth (km) 1.5 X (km) Isotropic data Isotropic mig (su) 01.5 Anisotropic data Isotropic mig 01.5 Anisotropic data Anisotropic mig

30 Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

31 0 0 4 Depth (km) 5 X (km) Salt Model (VTI)

32 0 0 4 Depth (km) 5 X (km) Iso-mig

33 0 0 4 Depth (km) 5 X (km) VTI Aniso-mig

34 01.5 Anisotropy Error 40 % X (km) 0 4 Depth (km) 01.5 Anisotropy Error 10 % X (km) 01.5 Anisotropy Error 20 % X (km) Inaccurate Thomsen’s Parameters (VTI)

35 510 Anisotropy Error 40 % X (km) 3 4 Depth (km) 510 Anisotropy Error 10 % X (km) 510 Anisotropy Error 20 % X (km) Inaccurate Thomsen’s Parameters

36 Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE VTI model 3-D SEG/EAGE VTI model

37 0 4 Depth (km) 05 X (km) 05 VTI Aniso (y=1.5 km) Iso (y=1.5 km)

38 0 4 Depth (km) 05 Y (km) 05 VTI Aniso (x=1.5 km) Iso (x=1.5 km)

39 0 4 Depth (km) 05 Y (km) 05 VTI Aniso (x=3 km)Iso (x=3 km)

40 0 0 5 Y (km) 5 X (km) 05 VTI Aniso (z=0.5 km)Iso (z=0.5 km)

41 0 0 5 Y (km) 5 X (km) 05 VTI Aniso (z=2.5 km)Iso (z=2.5 km)

42 Contents Motivation Anisotropy Wave-Equation Migration Numerical Examples: Cusp model Conclusions 2-D SEG/EAGE model 3-D SEG/EAGE model

43 Conclusions Works for 2-D and 3-D media New > 78 Anisotropic wave propagator: Improves spatial resolution Valid for VTI and TI o 78 Propagator Cost = Cost of Standard 45^ o propagator o

44 Thanks To 2003 UTAM Sponsors CHPC


Download ppt "Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah."

Similar presentations


Ads by Google