Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 1 Project: IEEE P802.15 Working.

Similar presentations


Presentation on theme: "Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 1 Project: IEEE P802.15 Working."— Presentation transcript:

1 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Chaotic Pulse Based Communication System Proposal] Date Submitted: [4 January, 2005] Source: [Hyung Soo Lee (1), Cheol Hyo Lee (1), Dong Jo Park (2), Dan Keun Sung (2), Sung Yoon Jung (2), Chang Yong Jung (2), Joon Yong Lee (3)] Company [(1) Electronics and Telecommunications Research Institute (ETRI) (2) Korea Advanced Institute of Science and Technologies (KAIST) (3) Handong Global University (HGU)] Address [(1) 161 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea (2) 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea (3) Heunghae-eup, Buk-gu, Pohang, Republic of Korea] Voice :[(1) +82 42 860 5625, (2) +82 42 869 5438, (3) +82 54 260 1931], FAX: [(2) +82 42 869 8038] E-Mail: [(1) hsulee@etri.re.kr, (2) syjung@kaist.ac.kr, (3) joonlee@handong.edu] Abstract:[The Chaotic Communication System is proposed for the alternative PHY for 802.15.4a] Purpose:[This submission is in response to the committee’s request to submit the proposal enabled by an alternate 802.15 TG4a PHY] Notice:This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

2 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 2 CFP Presentation for IEEE 802.15.4a Alternative PHY Electronics and Telecommunications Research Institute (ETRI) Korea Advanced Institute of Science and Technologies (KAIST) Handong Global University (HGU) Republic of Korea Chaotic Pulse Based Communication System Proposal

3 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 3 Contents Band Plan Chaotic Pulse PHY Layer Proposal System Performance Simultaneously Operating Piconets (SOPs) Link Budget & Sensitivity Ranging

4 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 4 Band Plan Bandwidth : Two bands - Low band (3.1 to 4.9 GHz) : Mandatory band - High band (5.825 to 10.6 GHz) : for future use Low band 34567891011 High band 34567891011

5 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 5 Chaotic Pulse Large base signal [base=2*bandwidth*duration] Flexible bandwidth and signal duration Low cost implementation

6 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 6 Modulation Scheme Multi-coded Pulse Position Modulation (MC- PPM) It is power efficient scheme It has inherent coding gain due to orthogonal multi- codes It can support wide pulse spacing in same data rate condition Less multipath interference between pulses Good for non-coherent energy detection No dynamic threshold problem Disadvantage in On-Off Keying (OOK) based on non-coherent energy detection

7 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 7 Multi-Coded PPM (MC-PPM) Operation example (L=3, Ns=4) * Ref : 15-04-0485-04-004a-multi-coded-bi-orthogonal-ppm-mc-bppm-based-impulse-radio-technology Modulation MC-PPM Signal : Data block ( L bits ) Ex. L=3 Orthogonal code set ( Code Length : Ns ) Ex. Ns=4 Multi-coded symbol ( Code rate : L/Ns ) Ex. Code rate = 3/4 1 1 1 1 11 1 1 1 1 11 1 1 11-31 1 11

8 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 8 : # of Repetitions : Orthogonal Code length : Position number for MC-PPM... Data Frame Structure Frame structure of PPDU 1 data block (L data) interval of PSDU : PreambleSFDPHRPSDU : # of bits per data block : Orthogonal code length : # of repetitions : Pulse bin width (duration) : Total transmit time duration of a data block : Guard time for processing delay : Multi-coded chip duration : Multi-coded symbol duration 41132

9 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 9 Transmitter Receiver Transceiver Architecture Data Modulator MC-PPM Channel Data Encoder Orthogonal Multi-code Data Pulse Generator Data Decoder Orthogonal Multi-code Data DeModulator MC-PPM Data Energy Detector Location Detector

10 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 10 Flexible data rates can be supported according to several design parameter (Tm, L, Ns, Nr, Tg) PHY-SAP Data Rates TpTmLNsNrTg Data Rate 20ns200ns1161280ns1.190 kbps 20ns200ns31610ns228 kbps 20ns200ns3810ns457 kbps 20ns200ns1110ns2.44 Mbps

11 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 11 Data Throughput Transmission time (t tx ) & Data throughput (R th ) For L=3, Ns=8, Nr=1,Tg=0ns (457kbps) t tx = t long_frame + t ACK + t ACK_frame + LIFS = 614.4 u + 25.6 u + 187.7 u + 85.3 u = 913 u R th = 32×8 / 913u ≈ 280.3 kbps ( Nominal throughput based on 32 bytes payload ) For L=3, Ns=16, Nr=1,Tg=0ns (228kbps) t tx = t long_frame + t ACK + t ACK_frame + LIFS = 1228.8 u + 51.2 u + 375.5 u + 170.7 u = 1826.2 u R th = 32×8 / 1826.2 u ≈ 140.2 kbps ( Nominal throughput based on 32 bytes payload ) LIFSt ACK t long_frame t ACK_frame ∙∙∙∙ t tx

12 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 12 Comments on 1kbps PHY-SAP Data Rate Burst Transmission Scheme > L=3, Ns=8, Nr=1,Tg=0ns (457kbps) L=3, Ns=16, Nr=1,Tg=0ns (228kbps) 32*8/3 Data Blocks 1 Packet Time Duration

13 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 13 Energy detection based acquisition Acquisition should be performed in order to make synchronization and demodulate data Procedure If the output of energy detector exceeds the threshold level, we think that the signal is acquired. Threshold level for acquisition Determined relative to estimated noise level Signal Acquisition

14 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 14 Non-coherent Synchronization Procedure Assume Nint square-law integrator Divide Tm time into total Nint time slots (each time slot contains Tm / Nint time) Synchronization preamble t_s : sync. starting point t_sync : exact sync. point

15 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 15 Non-coherent Synchronization Procedure The output value of n-th square-law integrator Estimated synchronization point Synchronization

16 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 16 BER & PER L=3, Ns=8,Nr=1 (457kbps PHY-SAP data rate) MC-PPM Performance : AWGN

17 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 17 BER & PER L=3, Ns=8,Nr=1 MC-PPM Performance : 4a Channel Models

18 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 18 System Parameters Chaotic Pulse [BW=1.8GHz(3.1G-4.9GHz), Tp=20ns] Preamble Length 4 bytes (32 preamble symbols) Tm=200ns, Ts=100ns (5 chaotic pulses of duration 20ns) Preamble Time Duration = 32 symbols*200ns=6.4us Num. of Integrator (Nint) = 10 Assume that only 5 Integrator are implemented in HW Actual Preamble Length = 32 Symbols/(Nint/5)=16 Symbols Sync. Resolution Range = [-10ns, 10ns] Threshold level for acquisition Determined relative to the estimated noise level Acquisition & Synchronization Parameters

19 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 19 Comments Acquisition performance is dependent on threshold level Acquisition Performance : AWGN Env. Dist. Miss Detection Probability (%) 10m ≈0% 30m 0.1%

20 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 20 Comments Signal acquisition is assumed Performance depends on Sync. Resolution Range Synchronization Performance Env. Dist. AWGN Industrial NLOS (CM8) Residential LOS (CM1) Outdoor LOS (CM5) 10m 99%74% 30m 99%72%73%

21 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 21 Time Division Operating bandwidth 3.1-4.9 GHz can be fully used (Chaotic pulse) Configuration of SOPs Self configuration of SOPs is possible SOPs Piconet #1 ActiveInactive Piconet #2 Piconet #3

22 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 22 Self Configuration of SOP Passive Scan Repeat scaning one channel (3.1-4.9 GHz) Usage Starting a new piconet (FFD) Association (FFD or RFD)

23 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 23 Link Budget & Sensitivity Parameter (mandatory) Value at d=30m (mandatory) Value at d=10m peak payload bit rate(457kb/s) [ L=3,Ns=8,Nr=1] Average Tx power-8.75 (dBm) Tx antenna gain0 (dBi) geometric center frequency of waveform3.90 (GHz) Path loss at 1 meter44.5dB Path loss at d m29.54 dB at d =30m20 dB at d =10m Rx antenna gain0 (dBi) Rx power-82.55 (dBm)-73.01 (dBm) Average noise power per bit-117.4 (dBm) Rx Noise Figure7 (dB) Average noise power per bit-110.4(dBm) Minimum Eb/N0 (S) [Ep/N0]20 (dB) Implementation Loss (I)5 (dB) Link Margin2.85(dB)12.39(dB) Proposed Min. Rx Sensitivity Level-85.4(dBm)

24 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 24 Ranging Scheme TOA/TWR (Two Way Ranging) – Measurement of T round_trip Packet 1 Node 1 Node 2 t1t1 t0t0 t2t2 t3t3 T processing time T propagation2 Packet 2 Packet 1Packet 2 T propagation1 T round trip

25 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 25 Ranging Algorithm Procedure (Algorithm) Search for the 1 st level-crossing point at the threshold level in negative direction from the initial lock point References: Joon-Yong Lee and Robert A. Scholtz, "Ranging in a dense multipath environment using an UWB radio link", IEEE Journal on Selected Areas in Communications, vol.20, no.9, pp.1677 - 1683, Dec. 2002 Robert A. Scholtz and Joon-Yong Lee, "Problems in modeling UWB channels", 36'th Asilomar Conference on Signals, Systems & Computers, Nov. 2002 search for the 1 st level-crossing point length of search region Potential lock point (peak) threshold level signal leading edge time (ns) envelope detector output

26 Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 26 Ranging Performance Performance 802.15.4a channel (cm4) Single user No narrowband interference Pulse width = 20ns Integration time = 2ns Pulse repetition period = 200ns Length of search region = 40ns Threshold level was determined relative to noise floor A separate envelope detector for range estimation was employed


Download ppt "Jan. 2005 H. Lee, C. Lee, D. Park, D. Sung, S. Jung and C. Jung, J. Lee doc.: IEEE 802. 15-05-0010-03-004a Submission Slide 1 Project: IEEE P802.15 Working."

Similar presentations


Ads by Google