Download presentation

Presentation is loading. Please wait.

Published byShana Owen Modified over 2 years ago

1
**Solve inequalities that contain more than one operation.**

Objective Solve inequalities that contain more than one operation. Inequalities that contain more than one operation require more than one step to solve. Use inverse operations to undo the operations in the inequality one at a time. To solve more complicated inequalities, you may first need to simplify the expressions on one or both sides by using the order of operations, combining like terms, or using the Distributive Property.

2
**Example 1A: Solving Multi-Step Inequalities**

Solve the inequality and graph the solutions. 45 + 2b > 61 Since 45 is added to 2b, subtract 45 from both sides to undo the addition. 45 + 2b > 61 – –45 2b > 16 Since b is multiplied by 2, divide both sides by 2 to undo the multiplication. b > 8 2 4 6 8 10 12 14 16 18 20

3
**Example 1B: Solving Multi-Step Inequalities**

Solve the inequality and graph the solutions. 8 – 3y ≥ 29 Since 8 is added to –3y, subtract 8 from both sides to undo the addition. 8 – 3y ≥ 29 – –8 –3y ≥ 21 Since y is multiplied by –3, divide both sides by –3 to undo the multiplication. Change ≥ to ≤. y ≤ –7 –10 –8 –6 –4 –2 2 4 6 8 10 –7

4
**Solve the inequality and graph the solutions.**

Check It Out! Example 1a Solve the inequality and graph the solutions. –12 ≥ 3x + 6 Since 6 is added to 3x, subtract 6 from both sides to undo the addition. –12 ≥ 3x + 6 – – 6 –18 ≥ 3x Since x is multiplied by 3, divide both sides by 3 to undo the multiplication. –6 ≥ x –10 –8 –6 –4 –2 2 4 6 8 10

5
**Example 2B: Simplifying Before Solving Inequalities**

Solve the inequality and graph the solutions. –4(2 – x) ≤ 8 –4(2 – x) ≤ 8 Distribute –4 on the left side. –4(2) – 4(–x) ≤ 8 Since –8 is added to 4x, add 8 to both sides. –8 + 4x ≤ 8 4x ≤ 16 Since x is multiplied by 4, divide both sides by 4 to undo the multiplication. x ≤ 4 –10 –8 –6 –4 –2 2 4 6 8 10

6
**Solve the inequality and graph the solutions.**

Check It Out! Example 2b Solve the inequality and graph the solutions. 3 + 2(x + 4) > 3 Distribute 2 on the left side. 3 + 2(x + 4) > 3 3 + 2x + 8 > 3 Combine like terms. 2x + 11 > 3 Since 11 is added to 2x, subtract 11 from both sides to undo the addition. – 11 – 11 2x > –8 Since x is multiplied by 2, divide both sides by 2 to undo the multiplication. x > –4 –10 –8 –6 –4 –2 2 4 6 8 10

7
Lesson Quiz: Part I Solve each inequality and graph the solutions. – 2x ≥ 21 x ≤ –4 2. – < 3p p > –3 3. 8 < –2(3 – t) t > 7

Similar presentations

OK

Algebra 1 Chapter 3 Section 5. 3-5 Solving Inequalities With Variables on Both Sides Some inequalities have variable terms on both sides of the inequality.

Algebra 1 Chapter 3 Section 5. 3-5 Solving Inequalities With Variables on Both Sides Some inequalities have variable terms on both sides of the inequality.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google