Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 13: Temperature and Ideal Gas.

Similar presentations


Presentation on theme: "Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 13: Temperature and Ideal Gas."— Presentation transcript:

1 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 13: Temperature and Ideal Gas What is Temperature? Temperature Scales Thermal Expansion Molecular Picture of a Gas The Ideal Gas Law Kinetic Theory of Ideal Gases Chemical Reaction Rates Collisions Between Molecules

2 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 2 §13.1 Temperature Heat is the flow of energy due to a temperature difference. Heat always flows from objects at high temperature to objects at low temperature. When two objects have the same temperature, they are in thermal equilibrium.

3 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 3 The Zeroth Law of Thermodynamics: If two objects are each in thermal equilibrium with a third object, then the two objects are in thermal equilibrium with each other.

4 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 4 §13.2 Temperature Scales Absolute or Kelvin scale Fahrenheit scale Celsius scale Water boils * K 212 F100 C Water freezes * K 32 F0 C Absolute zero0 K F C (*) Values given at 1 atmosphere of pressure.

5 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 5 The temperature scales are related by: Fahrenheit/ Celsius Absolute/ Celsius

6 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 6 Example (text problem 13.3): (a) At what temperature (if any) does the numerical value of Celsius degrees equal the numerical value of Fahrenheit degrees? (b) At what temperature (if any) does the numerical value of Kelvin equal the numerical value of Fahrenheit degrees?

7 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 7 §13.3 Thermal Expansion of Solids and Liquids Most objects expand when their temperature increases.

8 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 8 An objects length after its temperature has changed is is the coefficient of thermal expansion where T=T-T 0 and L 0 is the length of the object at a temperature T 0.

9 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 9 Example (text problem 13.84): An iron bridge girder (Y = N/m 2 ) is constrained between two rock faces whose spacing doesnt change. At 20.0 C the girder is relaxed. How large a stress develops in the iron if the sun heats the girder to 40.0 C? Using Hookes Law:

10 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 10 How does the area of an object change when its temperature changes? The blue square has an area of L 0 2. With a temperature change T each side of the square will have a length change of L = TL 0. L0L0 L 0 + L

11 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 11 The fractional change in area is:

12 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 12 The fractional change in volume due to a temperature change is: For solids =3

13 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 13 §13.4 Molecular Picture of a Gas The number density of particles is N/V where N is the total number of particles contained in a volume V. If a sample contains a single element, the number of particles in the sample is N = M/m. N is the total mass of the sample (M) divided by the mass per particle (m).

14 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 14 One mole of a substance contains the same number of particles as there are atoms in 12 grams of 12 C. The number of atoms in 12 grams of 12 C is Avogadros number.

15 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 15 A carbon-12 atom by definition has a mass of exactly 12 atomic mass units (12 u). This is the conversion factor between the atomic mass unit and kg (1 u = kg). N A and the mole are defined so that a 1 gram sample of a substance with an atomic mass of 1 u contains exactly N A particles.

16 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 16 Example (text problem 13.39): Air at room temperature and atmospheric pressure has a mass density of 1.2 kg/m 3. The average molecular mass of air is 29.0 u. How many air molecules are there in 1.0 cm 3 of air? The total mass of air in the given volume is:

17 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 17 Example continued:

18 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 18 §13.5 Absolute Temperature and the Ideal Gas Law Experiments done on dilute gases (a gas where interactions between molecules can be ignored) show that: For constant pressure Charles Law For constant volume Gay-Lussacs Law

19 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 19 Boyles Law For constant temperature For constant pressure and temperature Avogadros Law

20 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 20 Putting all of these statements together gives the ideal gas law (microscopic form): k = J/K is Boltzmanns constant The ideal gas law can also be written as (macroscopic form): R = N A k= 8.31 J/K/mole is the universal gas constant and n is the number of moles.

21 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 21 Example (text problem 13.41): A cylinder in a car engine takes V i = m 3 of air into the chamber at 30 C and at atmospheric pressure. The piston then compresses the air to one-ninth of the original volume and to 20.0 times the original pressure. What is the new temperature of the air? Here, V f = V i /9, P f = 20.0P i, and T i = 30 C = 303 K. The ideal gas law holds for each set of parameters (before compression and after compression).

22 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 22 Example continued: Take the ratio: The final temperature is The final temperature is 673 K = 400 C.

23 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 23 §13.6 Kinetic Theory of the Ideal Gas An ideal gas is a dilute gas where the particles act as point particles with no interactions except for elastic collisions.

24 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 24 Gas particles have random motions. Each time a particle collides with the walls of its container there is a force exerted on the wall. The force per unit area on the wall is equal to the pressure in the gas. The pressure will depend on: The number of gas particles Frequency of collisions with the walls Amount of momentum transferred during each collision

25 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 25 The pressure in the gas is Where is the average translational kinetic energy of the gas particles; it depends on the temperature of the gas.

26 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 26 The average kinetic energy also depends on the rms speed of the gas where the rms speed is

27 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 27 The distribution of speeds in a gas is given by the Maxwell- Boltzmann Distribution.

28 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 28 Example (text problem 13.60): What is the temperature of an ideal gas whose molecules have an average translational kinetic energy of J?

29 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 29 Example (text problem 13.70): What are the rms speeds of helium atoms, and nitrogen, hydrogen, and oxygen molecules at 25 C? ElementMass (kg)rms speed (m/s) He H2H N2N O2O On the Kelvin scale T = 25 C = 298 K.

30 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 30 §13.7 Temperature and Reaction Rates For a chemical reaction to proceed, the reactants must have a minimum amount of kinetic energy called activation energy (E a ).

31 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 31 If then only molecules in the high speed tail of Maxwell- Boltzmann distribution can react. When this is the situation, the reaction rates are an exponential function of T.

32 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 32 Example (text problem 13.76): The reaction rate for the hydrolysis of benzoyl-l-arginine amide by trypsin at 10.0 C is times faster than at 5.0 C. Assuming that the reaction rate is exponential, what is the activation energy? where T 1 = 10.0 C = 283 K and T 2 = 5 C = 278 K; and r 1 = r 2. The ratio of the reaction rates is

33 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 33 Solving for the activation energy gives: Example continued:

34 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 34 §13.8 Collisions Between Gas Molecules On average, a gas particle will be able to travel a distance before colliding with another particle. This is the mean free path. The quantity d 2 is the cross-sectional area of the particle.

35 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 35 After a collision, the molecules involved will have their direction of travel changed. Successive collisions produce a random walk trajectory.

36 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 36 Substances will move from areas of high concentration to areas of lower concentration. This process is called diffusion. In a time t, the rms displacement in one direction is: D is the diffusion constant (see table 13.3).

37 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 37 Example (text problem 13.81): Estimate the time it takes a sucrose molecule to move 5.00 mm in one direction by diffusion in water. Assume there is no current in the water. Solve for t

38 Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 38 Summary Definition of Temperature Temperature Scales (Celsius, Fahrenheit, Absolute) Thermal Expansion Origin of Pressure in a Gas Ideal Gas Law Exponential Reaction Rates Mean Free Path


Download ppt "Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 13: Temperature and Ideal Gas."

Similar presentations


Ads by Google