Presentation is loading. Please wait.

Presentation is loading. Please wait.

HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.

Similar presentations


Presentation on theme: "HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7."— Presentation transcript:

1 HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7 Two color; Br detection…………………………………………………………………...8-20 Br* detection………………………………………………………………….21-24 H det……………………………………………………………………………..25-28 Updated: 09.10.2014

2 I(H*+Br*) I(H*+Br) HBr + */HBr + Integral values …PXP-140922,pxp; Lay:0; Gr:1; …….XLS-140916.xlsx KER/eV J´=J´´= 7 6 5 4 3 2 1 0 V(m+8)

3 …PXP-140922,pxp; Lay:1; Gr:2; …….XLS-140916.xlsx I(H*+Br*)/I(H*+Br) J´ => Overall drop in ratio with J´ V(m+8)

4 …PXP-140922,pxp; Lay:2; Gr:3; …….XLS-140916.xlsx => Overall drop in ratio with J´ V(m+8) J´ I(HBr + /HBr + *)/I(H*+Br)

5  V(m+8), H* + Br* J´=J´´= 7 6 5 4 3 2 1 0 …PXP-140922,pxp; Lay:3; Gr:4; …PXP-140922,pxp; Lay:4; Gr:5; V(m+8), H* + Br J´=J´´= 7 6 5 4 3 2 1 0 

6 HBr + (top peak) J´=J´´= 7 6 5 4 3 2 1 0  …PXP-140922,pxp; Lay:5; Gr:6; <= …XLS-140916.xlsx, sheet: „Angle processing“

7 J´ 22 I(HBr+;top peak) I(H*+Br*), I(H*+Br) V(m+8), VMI One-step analysis using  2 and  4 …PXP-140922a,pxp; Lay:0; Gr:3; <= XLS-140916.pxp: sheet: „Angle fits“ V(m+8)

8 Two color exp. Br detection: Two color exp. V(m+8)

9 Two-color: pump: V(m+8), J´= 0,….7 Probe: hv2hv Br line at260,622nm38369,75cm-176739,49 i.e. Br** <-<-Br: (…4p 5 ) 4 D 3/2 <-<-(4p 4 5p) 2 P 3/2 V(m+8)

10 J´= 0 1 2 J´= 3 4 5

11 2 color; Br detection (260.622 nm) pix …PXP-140922,pxp; Lay:6; Gr:7; V(m+8), J´=J´´= 7 6 5 4 3 2 1 0 V(m+8)

12 Above data recorded for repeller voltage = 2 kV One color VMI data recorded for repeller voltages = 3kV Velocity conversion factor alteration: C(2kV) = C(3kV)*(2/3) (is that correct?) where KER(Br+) = C* (pix) 2 and KER(Br + ) = (1/80)* KER(total) Hence KER(total) = 80* KER(Br+) V(m+8)

13 KER(total)/eV …PXP-140922,pxp; Lay:7 Gr:8; Strange disappearance of the peak V(m+8), H* + Br* J´=J´´= 7 6 5 4 3 2 1 0 1.25 eV V(m+8)

14 Now let´s do prediction calc. 1.Prediction calculation for one photon excitation into repulsive valence states followed by dissociation to form H + Br: KER(total)= E(J´´) + hv – D0(HBr) J´hvE(J´´)KER(Br(3/2)) cm-1 eV 040014,509804,5 1,215603527 140010,916,695169817,595161 1,21722712 240003,350,077529843,377524 1,220423727 339991,2100,13129881,331169 1,225129381 439974,85166,83229931,682217 1,231372118 539954,5250,14889994,648828 1,239178986 639930,25350,041210070,2912 1,248557449 739900,9466,461610157,36159 1,259352804 V(m+8)

15 Now let´s do prediction calc. 1.Prediction calculation for three photon excitation into superexcited State(s) followed by dissociation to form H* + Br: KER(total)= E(J´´) + 3hv – D0(HBr)-E(H*) J´3hvE(J´´)KER(Br(3/2)) cm-1 eV 0120043,507574,55 0,93912486 1120032,716,695167580,445161 0,939855768 2120009,950,077527591,027524 0,941167814 3119973,6100,13127604,781169 0,942873049 4119924,6166,83227622,432217 0,945061501 5119863,5250,14887644,698828 0,94782221 6119790,8350,04127671,841204 0,951187437 7119702,7466,46167700,211586 0,954704917 V(m+8)

16 Now let´s do prediction calc. 1.Prediction calculation for two photon resonance excitation to ion-pair state followed by predissociation to form H + Br: KER(total)= E(J´´) + 2hv – D0(HBr) J´2hvE(J´´)KER(Br(3/2)) cm-1 eV 080029049819 6,176771085 180021,816,6951649828,49516 6,177948335 280006,650,0775249846,67752 6,180202662 379982,4100,131249872,53117 6,183408106 479949,7166,832249906,53222 6,187623701 579909250,148849949,14883 6,192907489 679860,5350,041250000,5412 6,199279334 779801,8466,461650058,26159 6,206435752 V(m+8)

17 Comment This suggests that the main peak is due to Br formed by one photon excitation followed by dissociation to form H + Br The „inner ring fits with non of the above possibilities! „The „inner ring“ could be an artifact V(m+8)

18 Angular distribution analysis, 2 color exp. Br detection: V(m+8)

19 …PXP-140922c.pxp; Lay:0, Gr:1 V(m+8), fitting by beta2 and beta4 only J´=J´´= 7 6 5 4 3 2 1 0  Br detection: V(m+8)

20 J´ 22 V(m+8) …PXP-140922c.pxp; Lay:1, Gr:2 Purely perpendicular Br detection:

21 2 color exp. Br* detection: V(m+8)

22 …PXP-140922c.pxp; Lay:2, Gr:11 J´=J´´= 3 2 1 0 KER(total) eV 2hv 1hv Check 2hv

23 …PXP-140922c.pxp; Lay:4, Gr:15  V(m+8) 2hv No background Subtraction Fits for beta6 =0 J´= J´´= 3 2 1hv …PXP-140922c.pxp; Lay:3, Gr:14 

24 V(m+8) 22 Two color Br*-detection (exp. 141007), (NB: for beta6=0 fit) J´ 2hv (no bgr. Subtraction) …PXP-140922c.pxp; Lay:6, Gr:16 1hv

25 Angular distribution analysis, 2 color exp. H detection: V(m+8)

26 Two color exp. H-detection(set2): H detection, one color, 243.161 nm (H->->H* resonance) H detection, one color, 250.010 nm (J´´=3->->J´=3 resonance Two-color, 1) 250.010 nm (HBr resonance excitation) 2) 243.161 nm H resonance excitation, …PXP-140922b.pxp; Lay:1, Gr:3 KER(total) eV

27 V(m+8) Two color exp., H-detection (set2): One color, H detection, 250.010 nm (J´´=3->->J´=3 resonance Two-color, 1) 250.010 nm (HBr resonance excitation) 2) 243.161 nm H resonance excitation, Two color – one color KER(total) eV …PXP-140922b.pxp; Lay:2, Gr:4

28 Vm+8) Two color exp., H-detection: H detection, one color, 243.161 nm (H->->H* resonance) Two color – one color KER(total) eV …PXP-140922b.pxp; Lay:3, Gr:5


Download ppt "HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7."

Similar presentations


Ads by Google