Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa 2, F. C. R. Fernandes 1, M. J. A. Bolzan 1, H. S. Sawant 3 and M. Karlický 4 1 Instituto.

Similar presentations


Presentation on theme: "Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa 2, F. C. R. Fernandes 1, M. J. A. Bolzan 1, H. S. Sawant 3 and M. Karlický 4 1 Instituto."— Presentation transcript:

1 Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa 2, F. C. R. Fernandes 1, M. J. A. Bolzan 1, H. S. Sawant 3 and M. Karlický 4 1 Instituto de Pesquisa e Desenvolvimento (IP&D) Universidade do Vale do Paraíba (UNIVAP) São José dos Campos, SP, Brazil 2 Laboratório Associado de Computação e Matemática Aplicada (LAC) 3 Divisão de Astrofísica Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, SP, Brazil reinaldo.rosa@pq.cnpq.br 4 Astronomical Institute Academy of Sciences of the Czech Republic Ondrejov, Czech Republic

2 Outline Decimetric Solar Bursts (DSB) DSB Spectral Analysis Classifying Variability Pattern Using the Var[C(L)] and  H A Case Study for Space Weather Concluding Remarks

3 Decimetric Solar Bursts Data (Time Series): Brazilian Solar Spectroscope (BSS) (INPE-São José dos Campos) 1-2.5 GHz, 3MHz, 3ms, 2-3 s.f.u, 100 channels, 11:00-19:00 UT http://www.das.inpe.br/fmi/intranet/news.php Ondrejov Radio Observatory (Czech Republic) 3GHz, 10ms, 4MHz http://www.asu.cas.cz/~radio/

4 1.6-2.0 GHz SFU Starting 17:13:51.48 UT 25/9/2001

5 SFU June 06 2000 16:34:00 UT SFU 3GHz

6 Power spectra: 1/f  with 1.8 <   2  Complex scaling dynamics (hybrid components: plasma turbulence)   10% Previous Results from Spectral Analysis (Power Spectra) M. Karlický et al. A&A 375, 638-642 (2001) -2-1.92 Rosa et al. Adv Space Res 42 844–851(2008) Log f logP(w) α=2(1-H) (Mandelbrot, 1985) H  α H Non-homogeneous scaling ptocess

7 Non-homogeneous Stochastic Process  H and C(L) Var[C(L)] = (1/N)  i (C i -  C  ) 2 Estimating a more robust  H … C(L)  L -   H = 1-(  /2) Peitgen, Jurgen & Saupe Chaos and Fractals, Springer 1993 C(L) is the Auto-correlation function=> Non-stationary intermittent process Problem: Bias in  > 10% -1.92  H : “Holder exponent” Non-homogeneous scaling function w(1/L)  k  H

8  H : Wavelet Transform Modulus Maxima (WTMM) “Singularity Spectrum” (H)(H) where α H (t 0 ) is the Holder exponent (or singularity strength). Halsey et al., PRA 33:1141, 1986; Arneodo et al; Physica A 213:232, 1995. Dynamical Process Var(C)(5%)  H White Noise 0.002 0.5 1/f 2 0.089 0.6 1/f 1.66 0.034 0.8 Lorenz 0.025 0.4 Multip 0.020 1.1 N=1024 p-Model: 1<  H (L)<3 Characterizes  Non-homogeneous multi-scaling process: p-Model

9 Dynamical Process Var(C)(5%)  H (1%) White Noise 0.002 0.50 1/f 2 0.089 0.60 1/f 1.66 0.034 0.80 Lorenz 0.025 0.40 Multip 0.020 1.10 pModel 0.015 1.20 1.6 GHz 0.012 1.22 2.0 GHz 0.010 1.22 3.0 GHz 0.079 1.22 N=L=1024 1.6GHz 2GHz 3GHz 1.6GHz and 2.0 GHz (6 TS) 3 GHz (1 TS)

10 Solar Flares are classified by their x-ray flux in the 1.0 - 8.0 Angstrom band as measured by the NOAA GOES-8 satellite. On June 6, 2000, two solar flares from active region 9026 registered as powerful X-class eruptions. http://science.nasa.gov/headlines/y2000/ast07jun_1m.htm A Case Study for Space Weather

11 June 6, 2000 solar flares (X2.3) 15:00-16:35 UT (NOAA AR 9026)

12 Var[C(L)] = (1/N)  i (C i -  C  ) 2  1min before the flare

13 Concluding Remarks: This advanced spectral analysis suggested the influence of both, nonlinear oscillations in the magnetic field (A) + turbulent interaction between electron beams and evaporation shocks (B), on the decimetric radio emission energy source (turbulent non-homogeneous MHD p-model cascade) Thank you for your attention. LAC - CTE http://epacis.orghttp://epacis.org www.lac.inpe.brwww.lac.inpe.br The results suggest Var[C( L)] or Var[C] x  H as a new metric for Solar radio flux monitoring VLADA (Virtual Lab for Advanced Data Analysis) (EMBRACE)

14 V=9 g=9 =16 =20 Time Series Analysis (High sensitivity): Gradient Pattern Analysis “Asymmetry Coefficient”: G= (  - g)/g and Lim g   G=2 Assireu et al, Physica D 168(1):397, 2002.

15 G=1.87 G=1.82

16 Escala global Escala local G= (  - g)/g  G(ℓ) 

17 There are 16 time series with 1024 points – square matrices 32x32 The signal is decompose by Daubechies Discrete Wavelet (Db8) (see an example for 512 points) Gradient Spectra G(f)

18 Gradient Spectra for Turbulent-like Short Time Series  G =  1/N  [ G i ( ℓ)-  G( ℓ  ]


Download ppt "Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa 2, F. C. R. Fernandes 1, M. J. A. Bolzan 1, H. S. Sawant 3 and M. Karlický 4 1 Instituto."

Similar presentations


Ads by Google