Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mauro Rajteri, 12/06/2013 Panoramica INRIM Mauro Rajteri Divisione OTTICA.

Similar presentations


Presentation on theme: "Mauro Rajteri, 12/06/2013 Panoramica INRIM Mauro Rajteri Divisione OTTICA."— Presentation transcript:

1 Mauro Rajteri, 12/06/2013 Panoramica INRIM Mauro Rajteri Divisione OTTICA

2 Mauro Rajteri, 12/06/2013 Panoramica INRIM 2/46 Photon: also called Light Quantum, minute energy packet of electromagnetic radiation. The concept originated (1905) in Einsteins explanation of the photoelectric effect (enc. Brittanica) Photon counting: average count rate intensity of the light beam but actual count rate fluctuates from measurement to measurement.

3 Mauro Rajteri, 12/06/2013 Panoramica INRIM 3/ Coherent light & constant intensity:

4 Mauro Rajteri, 12/06/2013 Panoramica INRIM 4/46

5 Mauro Rajteri, 12/06/2013 Panoramica INRIM 5/46

6 Mauro Rajteri, 12/06/2013 Panoramica INRIM 6/46 Photon source "Classical" Single photon detector Photon number resolving (PNR) detector

7 Mauro Rajteri, 12/06/2013 Panoramica INRIM 7/46 TES: a superconducting film operated in the temperature region between the normal and the superconducting state T c ~ 1 mK high sensitive thermometer T Voltage bias I I bias t ( s ) I R bias << R tes T T c ~ 100 mK R Workig Point I tes

8 Mauro Rajteri, 12/06/2013 Panoramica INRIM 8/46 T c ~ 1 mK high sensitive thermometer T Voltage bias I I bias t ( s ) I R bias << R tes T T c ~ 100 mK R Workig Point I tes 1 ph TES: a superconducting film operated in the temperature region between the normal and the superconducting state

9 Mauro Rajteri, 12/06/2013 Panoramica INRIM 9/46 T T c ~ 1 mK high sensitive thermometer T Voltage bias I T c ~ 100 mK R I bias t ( s ) I 2 phs Working Point R bias << R tes I tes TES: a superconducting film operated in the temperature region between the normal and the superconducting state

10 Mauro Rajteri, 12/06/2013 Panoramica INRIM 10/46 10 µm X10 µm 20 µm X 20 µm T c =121 mK T c = 2 mK R n = Ω Bilayer – proximity effect Ti=24 nm, Au=54 nm

11 Mauro Rajteri, 12/06/2013 Panoramica INRIM 11/46 g = thermal conductance Thermal bath Substrate Superconductor - ph Superconductor - e g sub-b g ph-sub g e-ph TbTb T sub T ph TeTe PePe P inc PsPs K = constant: material and geometry dependent n = constant: depends on the dominant thermal coupling mechanism For T < 1K electron-phonon decoupling n 5

12 Mauro Rajteri, 12/06/2013 Panoramica INRIM 12/46 Intrinsic Energy Resolution E FWHM is proportional to the operating temperature T c Effective TES response time etf is lower than th if /n >1

13 Mauro Rajteri, 12/06/2013 Panoramica INRIM 13/46 1mm 0,5 mm back off 0,5 mm 5 mm 3 mm 0,25 1,5 mm 0,5 mm 0.8 mm 0,25 Silicon Silicon V-groove with fiber array Cu bracket Gaussian beam: w 0 =4.7/5.6 =1.3/1.55 m (TES 20 x 20 m) 2w 0 2w ~19 ÷ 25 m 2w2w z ~ 125 m acc ~ m ÷ m

14 Mauro Rajteri, 12/06/2013 Panoramica INRIM 14/46 Optical coupling fiber-TES Reflection and transmission of superconducting film Antireflection coating or optical cavity Substrate 2 layers Substrate 2 layers Substrate R(1550)=0.018% a-SiH (high reflection index) a-Si 3 N 4 :Hy (low reflection index)

15 Mauro Rajteri, 12/06/2013 Panoramica INRIM 15/46 Optical fiber I TES Electronics & data aquisition INRIM: TES module SQUID current sensors (PTB) Laser Attenuator

16 Mauro Rajteri, 12/06/2013 Panoramica INRIM 16/46

17 Mauro Rajteri, 12/06/2013 Panoramica INRIM 17/46

18 Mauro Rajteri, 12/06/2013 Panoramica INRIM 18/ Noisy Noisy: ΔE = 0.46 eV Wiener Wiener: ΔE = 0.22 eV (a) (b) D. Alberto, et al, Optical Transition-Edge Sensors Single Photon Pulse Analysis, IEEE Trans. Appl. Supercond., 21, 285 – 288 (2011) Wiener filter: 2x improvement on E

19 Mauro Rajteri, 12/06/2013 Panoramica INRIM 19/46

20 Mauro Rajteri, 12/06/2013 Panoramica INRIM 20/46 L. Lolli, et al. J. Low Temp. Phys., vol. 167, pp , X20 μ m 2 =1570 nm phs

21 Mauro Rajteri, 12/06/2013 Panoramica INRIM 21/46 p i s PARAMETRIC CRYSTAL COUNTER COINC COUNTER Absolute Quantum Efficiency COUNTER N Detector to be Calibrated Herald Detector NCNC N1N1 N2N2Klyshko Drawback: Klyshko's technique is not able to exploit the PNR ability of the detector Proposal and demonstration of an absolute technique for measuring quantum efficiency, based on an heralded single photon source, but exploiting the PNR ability of the detector A. Avella et al OPTICS EXPRESS p

22 Mauro Rajteri, 12/06/2013 Panoramica INRIM 22/46 Probability of observing i photons per heralding count in the presence of the heralded photon Probability of observing i photons per heralding count in the absence of the heralded photon (i.e. of observing i accidental counts) Total Quantum Efficiency of the PNR detector optical and coupling losses detector proper Quantum Efficiency Probability of having a True Heralding Count (not due to stray-light or dark counts) The probability of observing 0 photons per heralding count : Non detection & No accidentalFalse her.& No accidental

23 Mauro Rajteri, 12/06/2013 Panoramica INRIM 23/46 From each a value of Total Quantum Efficiency can be estimated Consistency Test The probability of observing i photons per heralding count From the probability of 0 From the probability of i Hp of the Klyshkos Technique: multiphoton PDC events negligible Hp of the Klyshkos Technique: multiphoton PDC events negligible

24 Mauro Rajteri, 12/06/2013 Panoramica INRIM 24/46 TES detection system HWP IF1 IF2 NLC a b PDC single photon source DET1 Pump source

25 Mauro Rajteri, 12/06/2013 Panoramica INRIM 25/46 HeraldedAccidental prob. of true heralding counts total quantum 807 nm DET1 PUMP 6 Repeated measurements each 5 hr. long > counts > counts

26 Mauro Rajteri, 12/06/2013 Panoramica INRIM 26/46 n n POVM provides the description of the measurement process Prob. of outputn

27 Mauro Rajteri, 12/06/2013 Panoramica INRIM 27/46 n n POVM provides the description of the measurement process Prob. of outputn

28 Mauro Rajteri, 12/06/2013 Panoramica INRIM 28/46 n n POVM provides the description of the measurement process Prob. of outputn : Prob. of having output n with m photons as input

29 Mauro Rajteri, 12/06/2013 Panoramica INRIM 29/46 Simplest Solution: Fock state source

30 Mauro Rajteri, 12/06/2013 Panoramica INRIM 30/46 Simplest Solution: Fock state source

31 Mauro Rajteri, 12/06/2013 Panoramica INRIM 31/46 Simplest Solution: Fock state source Affordable Solution: Coherent source [Lundeen et al., Nat. Phys 5, 27 (2009)]

32 Mauro Rajteri, 12/06/2013 Panoramica INRIM 32/46 Coherent source Pulsed laser source Experiment with a TES 1570 nm

33 Mauro Rajteri, 12/06/2013 Panoramica INRIM 33/46 Coherent source Pulsed laser source Experiment with a TES

34 Mauro Rajteri, 12/06/2013 Panoramica INRIM 34/46 Coherent source Pulsed laser source Experiment with a TES

35 Mauro Rajteri, 12/06/2013 Panoramica INRIM 35/46 Coherent source Linear detection model =5.1% G. Brida et al New Journal of Physics 14 (2012)

36 Mauro Rajteri, 12/06/2013 Panoramica INRIM 36/46 ADR cold finger Alignment: Joint Projects for the exchange of researchers within the Executive Programme Italy-Japan

37 Mauro Rajteri, 12/06/2013 Panoramica INRIM 37/46

38 Mauro Rajteri, 12/06/2013 Panoramica INRIM 38/46 =1535 nm =1535 nm QE 50 % TiAu TES T c =301 mK phs kHz means 3.65x10 6 photons/s (473 fW)

39 Mauro Rajteri, 12/06/2013 Panoramica INRIM 39/46

40 Mauro Rajteri, 12/06/2013 Panoramica INRIM 40/46 45nm Au+45nm Ti 10 m x 10 m T c =106 mK C e =0.35fJ/K R n =0.45

41 Mauro Rajteri, 12/06/2013 Panoramica INRIM 41/46 eff = 3.8 s E = (0.113 ± 0.001) eV (Submitted to APL)

42 Mauro Rajteri, 12/06/2013 Panoramica INRIM 42/46

43 Mauro Rajteri, 12/06/2013 Panoramica INRIM 43/46 TES Photon number resolving detectors TES Photon number resolving detectors Wavelength range: UV-IR Wavelength range: UV-IR Quantum efficiency:50% 90% Quantum efficiency:50% 90% Dark counts: background limited Dark counts: background limited Count rate: 1 MHz Count rate: 1 MHz Working temperature: < 1K Working temperature: < 1K

44 Mauro Rajteri, 12/06/2013 Panoramica INRIM 44/46 Fabbricazione: C. Portesi, E. Monticone Caratterizzazione : E. Taralli, L.Lolli, E. Monticone, M. Rajteri (criogenica, elettrica e ottica) E. Taralli, L. Callegaro (impedenza) Sviluppo Sviluppo TaraturaApplicazioni Ottica quantistica: A. Avella,G. Brida, L. Ciavarella, I. Degiovanni, M. Genovese, M. Gramegna, M.G. Mingolla,F. Piacentini, M.L. Rastello, P. Traina Collaborazioni Collaborazioni J. Beyer, D. Fukuda, T. Numata, M.G.A. Paris, M. White, G. Cantatore, G. Ventura

45 Mauro Rajteri, 12/06/2013 Panoramica INRIM 45/46 Progetto premiale P5 ( ) Oltre I limiti classici della misura NEW08 MetNEMS ( ) Metrology with/for NEMS Quantum Candela ( ) E45 ( ) Rivelatori superconduttivi a transizione di fase per conteggio di singoli fotoni Fotorivelatori superconduttivi ad elettroni caldi per il VIS-IR -Realizzazione di STJ come rivelatori in regime di conteggio di fotoni per applicazioni astrofisiche

46 Mauro Rajteri, 12/06/2013 Panoramica INRIM 46/46


Download ppt "Mauro Rajteri, 12/06/2013 Panoramica INRIM Mauro Rajteri Divisione OTTICA."

Similar presentations


Ads by Google