Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modelling Cell Growth Cellular kinetics and associated reactor design:

Similar presentations


Presentation on theme: "Modelling Cell Growth Cellular kinetics and associated reactor design:"— Presentation transcript:

1 Modelling Cell Growth Cellular kinetics and associated reactor design:
CP504 – Lecture 8 Cellular kinetics and associated reactor design: Modelling Cell Growth Approaches to modelling cell growth Unstructured segregated models Substrate inhibited models Product inhibited models Prof. R. Shanthini being modified

2 Cell Growth Kinetics The most commonly used model for μ is given by the Monod model: μm CS μ = (47) KS + CS where μmax and KS are known as the Monod kinetic parameters. Monod Model is an over simplification of the complicated mechanism of cell growth. However, it adequately describes the kinetics when the concentrations of inhibitors to cell growth are low. Prof. R. Shanthini being modified

3 Cell Growth Kinetics Let’s now take a look at the cell growth kinetics, limitations of Monod model, and alternative models. Prof. R. Shanthini being modified

4 Approaches to modelling cell growth:
Unstructured Models (cell population is treated as single component) Structured Models (cell population is treated as a multi-component system) Nonsegregated Models (cells are treated as homogeneous) Segregated Models (cells are treated heterogeneous) Prof. R. Shanthini being modified

5 Unstructured Nonsegregated Models Structured Segregated Models
Approaches to modelling cell growth: Unstructured Nonsegregated Models (cell population is treated as single component, and cells are treated as homogeneous) Structured Segregated Models (cell population is treated as a multi-component system, and cells are treated heterogeneous) Most realistic, but are computationally complex. Simple and applicable to many situations. Prof. R. Shanthini being modified

6 Unstructured, nonsegregated models:
Monod model: Most commonly used model for cell growth μm CS μ = KS + CS μ : specific (cell) growth rate μm : maximum specific growth rate at saturating substrate concentrations CS : substrate concentration KS : saturation constant (CS = KS when μ = μm / 2) Prof. R. Shanthini being modified

7 Unstructured, nonsegregated models:
Monod model: Most commonly used model for cell growth μm CS μ = KS + CS μ (per h) μm = 0.9 per h Ks = 0.7 g/L Prof. R. Shanthini being modified

8 Assumptions behind Monod model:
- One limiting substrate Semi-empirical relationship Single enzyme system with M-M kinetics being responsible for the uptake of substrate Amount of enzyme is sufficiently low to be growth limiting Cell growth is slow Cell population density is low Prof. R. Shanthini being modified

9 Other unstructured, nonsegregated models (assuming one limiting substrate):
Blackman equation: μ = μm if CS ≥ 2KS μm CS μ = if CS < 2KS 2 KS Tessier equation: μ = μm [1 - exp(-KCS)] μm CSn Moser equation: μ = KS + CSn μm CS Contois equation: μ = KSX CX + CS Prof. R. Shanthini being modified

10 Blackman equation: μ = μm if CS ≥ 2 KS
This often fits the data better than the Monod model, but the discontinuity can be a problem. μm CS if CS < 2 KS μ = 2 KS μ (per h) μm = 0.9 per h Ks = 0.7 g/L Prof. R. Shanthini being modified

11 Tessier equation: μ = μm [1 - exp(-KCS)] μ (per h) μm = 0.9 per h
K = 0.7 g/L Prof. R. Shanthini being modified

12 Moser equation: μm CSn When n = 1, Moser equation describes Monod model. μ = KS + CSn μ (per h) μm = 0.9 per h Ks = 0.7 g/L Prof. R. Shanthini being modified

13 Contois equation: Saturation constant (KSX CX ) is proportional to cell concentration μm CS μ = KSX CX + CS Prof. R. Shanthini being modified

14 Extended Monod model: Extended Monod model includes a CS,min term, which denotes the minimal substrate concentration needed for cell growth. μm (CS – CS,min) μ = KS + CS – CS,min μ (per h) μm = 0.9 per h Ks = 0.7 g/L CS,min = 0.5 g/L Prof. R. Shanthini being modified

15 Monod model for two limiting substrates:
CS1 CS2 μm μ = KS1 + CS1 KS2 + CS2 Prof. R. Shanthini being modified

16 Monod model modified for rapidly-growing, dense cultures:
Monod model is not suitable for rapidly-growing, dense cultures. The following models are best suited for such situations: μm CS μ = KS0 CS0 + CS μm CS μ = KS1 + KS0 CS0 + CS where CS0 is the initial substrate concentration and KS0 is dimensionless. Prof. R. Shanthini being modified

17 Monod model modified for substrate inhibition:
Monod model does not model substrate inhibition. Substrate inhibition means increasing substrate concentration beyond certain value reduces the cell growth rate. μ (per h) Prof. R. Shanthini being modified

18 Monod model modified for cell growth with noncompetitive substrate inhibition:
μ = (1 + KS/CS)(1 + CS/KI ) μm CS = KS + CS + CS2/KI + KS CS/KI μm CS If KI >> KS then μ = KS + CS + CS2/KI where KI is the substrate inhibition constant. Prof. R. Shanthini being modified

19 Monod model modified for cell growth with competitive substrate inhibition:
μm CS μ = KS(1 + CS/KI) + CS where KI is the substrate inhibition constant. Prof. R. Shanthini being modified

20 Monod model modified for cell growth with product inhibition:
Monod model does not model product inhibition (where increasing product concentration beyond certain value reduces the cell growth rate) For competitive product inhibition: μm CS μ = KS(1 + Cp/Kp) + CS For non-competitive product inhibition: μm μ = (1 + KS/CS)(1 + Cp/Kp ) where Cp is the product concentration and Kp is a product inhibition constant. Prof. R. Shanthini being modified

21 Monod model modified for cell growth with product inhibition:
Ethanol fermentation from glucose by yeasts is an example of non-competitive product inhibition. Ethanol is an inhibitor at concentrations above nearly 5% (v/v). Rate expressions specifically for ethanol inhibition are the following: μm CS (1 + Cp/Cpm) μ = (KS + CS) μm CS μ = exp(-Cp/Kp) (KS + CS) where Cpm is the product concentration at which growth stops. Prof. R. Shanthini being modified

22 Monod model modified for cell growth with toxic compound inhibition:
For competitive toxic compound inhibition: μm CS μ = KS(1 + CI/KI) + CS For non-competitive toxic compound inhibition: μm μ = (1 + KS/CS)(1 + CI/KI ) where CI is the product concentration and KI is a constant to be determined. Prof. R. Shanthini being modified

23 Monod model extended to include cell death kinetics:
μm CS μ = - kd KS + CS where kd is the specific death rate (per time). Prof. R. Shanthini being modified

24 Beyond this slide, modifications will be made.
Prof. R. Shanthini being modified

25 Other unstructured, nonsegregated models (assuming one limiting substrate):
Luedeking-Piret model: rP =  rX + β CX Used for lactic acid formation by Lactobacillus debruickii where production of lactic acid was found to occur semi-independently of cell growth. Prof. R. Shanthini being modified

26 Modelling μ under specific conditions:
There are models used under specific conditions. We will learn them as the situation arises. Prof. R. Shanthini being modified

27 Limitations of unstructured non-segregated models:
No attempt to utilize or recognize knowledge about cellular metabolism and regulation Show no lag phase Give no insight to the variables that influence growth Assume a black box Assume dynamic response of a cell is dominated by an internal process with a time delay on the order of the response time Most processes are assumed to be too fast or too slow to influence the observed response. Prof. R. Shanthini being modified

28 Filamentous Organisms:
Types of Organisms Moulds and fungi bacteria or yeast entrapped in a spherical gel particle formation of microbial pettlets in suspension Their growth does not necessarily increase the number of cells, but increase them in length, and hence there will be changes in physical properties like density of the cell mass and viscosity of the broth Model - no mass transfer limitations where R is the radius of the cell floc or pellet or mold colony Prof. R. Shanthini being modified

29 Filamentous Organisms:
The product formation may be growth associated, which means rate of product formation is proportional to the cell growth rate (i.e., product is formed as a result of the primary metabolic function of the cell) rP =  rX It happens mostly during the exponential growth phase Examples: production of alcohol by the anaerobic fermentation of glucose by yeast production of gluconic acid from glucose by Gluconobactor Prof. R. Shanthini being modified

30 Filamentous Organisms:
The product formation may be non-growth associated, which means rate of product formation is proportional to the cell concentration rather than cell growth rate (i.e., product is formed as a result of the secondary metabolism) rP = β CX It happens at the end of the exponential growth phase or only after entering into the stationary phase Examples: production of antibiotics in batch fermentations production of vitamins in batch fermentations Prof. R. Shanthini being modified

31 Other unstructured, nonsegregated models (assuming one limiting substrate):
Luedeking-Piret model: rP =  rX + β CX Used for lactic acid formation by Lactobacillus debruickii where production of lactic acid was found to occur semi-independently of cell growth. Prof. R. Shanthini being modified

32 Filamentous Organisms:
Then the growth of the biomass (M) can be written as where Prof. R. Shanthini being modified

33 Filamentous Organisms:
Integrating the equation: M0 is usually very small then Model is supported by experimental data. Prof. R. Shanthini being modified

34 Chemically Structured Models :
Improvement over nonstructured, nonsegregated models Need less fudge factors, inhibitors, substrate inhibition, high concentration different rates etc. Model the kinetic interactions amoung cellular subcomponents Try to use Intrinsic variables - concentration per unit cell mass- Not extrinsic variables - concentration per reactor volume More predictive Incorporate our knowledge of cell biology Prof. R. Shanthini being modified


Download ppt "Modelling Cell Growth Cellular kinetics and associated reactor design:"

Similar presentations


Ads by Google