Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 9 Aggregate Data Organization Topics Pointers Aggregate Data Array layout in memory Structures February 14, 2012 CSCE 212 Computer Architecture.

Similar presentations


Presentation on theme: "Lecture 9 Aggregate Data Organization Topics Pointers Aggregate Data Array layout in memory Structures February 14, 2012 CSCE 212 Computer Architecture."— Presentation transcript:

1 Lecture 9 Aggregate Data Organization Topics Pointers Aggregate Data Array layout in memory Structures February 14, 2012 CSCE 212 Computer Architecture

2 – 2 – CSCE 212H Spring 2012 Overview Last Time GDB recursive Lab 2 – Questions due today Test 1 Feb ?? Not Feb 15New Datalab Pointers Aggregate Data Array layout in memory Structures Next Time: Test 1 – Feb 23 February 27, Mon. Last day to drop a course or withdraw without a grade of "WF" being recorded (Session C002) Test 1 Review

3 – 3 – CSCE 212H Spring 2012 Pointer Code void s_helper (int x, int *accum) { if (x <= 1) return; else { int z = *accum * x; *accum = z; s_helper (x-1,accum); } int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Top-Level Call Recursive Procedure Pass pointer to update location

4 – 4 – CSCE 212H Spring 2012 Temp. Space %esp Creating & Initializing Pointer int sfact(int x) { int val = 1; s_helper(x, &val); return val; } _sfact: pushl %ebp# Save %ebp movl %esp,%ebp# Set %ebp subl $16,%esp# Add 16 bytes movl 8(%ebp),%edx# edx = x movl $1,-4(%ebp)# val = 1 Using Stack for Local Variable Variable val must be stored on stack Need to create pointer to it Compute pointer as - 4(%ebp) Push on stack as second argument Initial part of sfact x Rtn adr Old %ebp %ebp 0 4 8 -4 val = 1 Unused -12 -8 -16 _sfact: pushl %ebp# Save %ebp movl %esp,%ebp# Set %ebp subl $16,%esp# Add 16 bytes movl 8(%ebp),%edx# edx = x movl $1,-4(%ebp)# val = 1 _sfact: pushl %ebp# Save %ebp movl %esp,%ebp# Set %ebp subl $16,%esp# Add 16 bytes movl 8(%ebp),%edx# edx = x movl $1,-4(%ebp)# val = 1 _sfact: pushl %ebp# Save %ebp movl %esp,%ebp# Set %ebp subl $16,%esp# Add 16 bytes movl 8(%ebp),%edx# edx = x movl $1,-4(%ebp)# val = 1

5 – 5 – CSCE 212H Spring 2012 Passing Pointer int sfact(int x) { int val = 1; s_helper(x, &val); return val; } leal -4(%ebp),%eax# Compute &val pushl %eax# Push on stack pushl %edx# Push x call s_helper# call movl -4(%ebp),%eax# Return val # Finish Calling s_helper from sfact x Rtn adr Old %ebp %ebp 0 4 8 val = 1 -4 Unused -12 -8 -16 %esp x &val Stack at time of call leal -4(%ebp),%eax# Compute &val pushl %eax# Push on stack pushl %edx# Push x call s_helper# call movl -4(%ebp),%eax# Return val # Finish leal -4(%ebp),%eax# Compute &val pushl %eax# Push on stack pushl %edx# Push x call s_helper# call movl -4(%ebp),%eax# Return val # Finish val =x!

6 – 6 – CSCE 212H Spring 2012 Using Pointer movl %ecx,%eax# z = x imull (%edx),%eax# z *= *accum movl %eax,(%edx)# *accum = z void s_helper (int x, int *accum) { int z = *accum * x; *accum = z; } Register %ecx holds x Register %edx holds pointer to accum Use access (%edx) to reference memory %edx accum x x %eax %ecx accum*x

7 – 7 – CSCE 212H Spring 2012 Array Allocation Basic Principle T A[ L ]; Array of data type T and length L Contiguously allocated region of L * sizeof( T ) bytes char string[12]; xx + 12 int val[5]; x x + 4x + 8x + 12x + 16x + 20 double a[4]; x + 32 x + 24 x x + 8x + 16 char *p[3]; x x + 4x + 8

8 – 8 – CSCE 212H Spring 2012 Array Access Basic Principle T A[ L ]; Array of data type T and length L Identifier A can be used as a pointer to array element 0 ReferenceTypeValue val[4]int3 valint * x val+1int * x + 4 &val[2]int * x + 8 val[5]int ?? *(val+1)int5 val + i int * x + 4 i 15213 int val[5]; x x + 4x + 8x + 12x + 16x + 20

9 – 9 – CSCE 212H Spring 2012 Array Example Notes Declaration “ zip_dig cmu ” equivalent to “ int cmu[5] ” Example arrays were allocated in successive 20 byte blocks Not guaranteed to happen in general typedef int zip_dig[5]; zip_dig cmu = { 1, 5, 2, 1, 3 }; zip_dig mit = { 0, 2, 1, 3, 9 }; zip_dig ucb = { 9, 4, 7, 2, 0 }; zip_dig cmu; 15213 162024283236 zip_dig mit; 02139 364044485256 zip_dig ucb; 94720 566064687276

10 – 10 – CSCE 212H Spring 2012 Array Accessing Example Memory Reference Code int get_digit (zip_dig z, int dig) { return z[dig]; } # %edx = z # %eax = dig movl (%edx,%eax,4),%eax # z[dig] Computation Register %edx contains starting address of array Register %eax contains array index Desired digit at 4*%eax + %edx Use memory reference (%edx,%eax,4)

11 – 11 – CSCE 212H Spring 2012 Referencing Examples Code Does Not Do Any Bounds Checking! ReferenceAddressValueGuaranteed? mit[3]36 + 4* 3 = 483 mit[5]36 + 4* 5 = 569 mit[-1]36 + 4*-1 = 323 cmu[15]16 + 4*15 = 76?? Out of range behavior implementation-dependent No guaranteed relative allocation of different arrays zip_dig cmu; 15213 162024283236 zip_dig mit; 02139 364044485256 zip_dig ucb; 94720 566064687276 Yes No No No

12 – 12 – CSCE 212H Spring 2012 int zd2int(zip_dig z) { int i; int zi = 0; for (i = 0; i < 5; i++) { zi = 10 * zi + z[i]; } return zi; } Array Loop Example Original Source int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } Transformed Version As generated by GCC Eliminate loop variable i Convert array code to pointer code Express in do-while form No need to test at entrance

13 – 13 – CSCE 212H Spring 2012 # %ecx = z xorl %eax,%eax# zi = 0 leal 16(%ecx),%ebx# zend = z+4.L59: leal (%eax,%eax,4),%edx# 5*zi movl (%ecx),%eax# *z addl $4,%ecx# z++ leal (%eax,%edx,2),%eax# zi = *z + 2*(5*zi) cmpl %ebx,%ecx# z : zend jle.L59# if <= goto loop Array Loop Implementation Registers %ecxz %eaxzi %ebxzendComputations 10*zi + *z implemented as *z + 2*(zi+4*zi) z++ increments by 4 int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } # %ecx = z xorl %eax,%eax# zi = 0 leal 16(%ecx),%ebx# zend = z+4.L59: leal (%eax,%eax,4),%edx# 5*zi movl (%ecx),%eax# *z addl $4,%ecx# z++ leal (%eax,%edx,2),%eax# zi = *z + 2*(5*zi) cmpl %ebx,%ecx# z : zend jle.L59# if <= goto loop int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } # %ecx = z xorl %eax,%eax# zi = 0 leal 16(%ecx),%ebx# zend = z+4.L59: leal (%eax,%eax,4),%edx# 5*zi movl (%ecx),%eax# *z addl $4,%ecx# z++ leal (%eax,%edx,2),%eax# zi = *z + 2*(5*zi) cmpl %ebx,%ecx# z : zend jle.L59# if <= goto loop int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } # %ecx = z xorl %eax,%eax# zi = 0 leal 16(%ecx),%ebx# zend = z+4.L59: leal (%eax,%eax,4),%edx# 5*zi movl (%ecx),%eax# *z addl $4,%ecx# z++ leal (%eax,%edx,2),%eax# zi = *z + 2*(5*zi) cmpl %ebx,%ecx# z : zend jle.L59# if <= goto loop int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } # %ecx = z xorl %eax,%eax# zi = 0 leal 16(%ecx),%ebx# zend = z+4.L59: leal (%eax,%eax,4),%edx# 5*zi movl (%ecx),%eax# *z addl $4,%ecx# z++ leal (%eax,%edx,2),%eax# zi = *z + 2*(5*zi) cmpl %ebx,%ecx# z : zend jle.L59# if <= goto loop int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; }

14 – 14 – CSCE 212H Spring 2012 Nested Array Example Declaration “ zip_dig pgh[4] ” equivalent to “ int pgh[4][5] ” Variable pgh denotes array of 4 elements »Allocated contiguously Each element is an array of 5 int ’s »Allocated contiguously “Row-Major” ordering of all elements guaranteed #define PCOUNT 4 zip_dig pgh[PCOUNT] = {{1, 5, 2, 0, 6}, {1, 5, 2, 1, 3 }, {1, 5, 2, 1, 7 }, {1, 5, 2, 2, 1 }}; zip_dig pgh[4]; 7696116136156 15206152131521715221

15 – 15 – CSCE 212H Spring 2012 Nested Array Allocation Declaration T A[ R ][ C ]; Array of data type T R rows, C columns Type T element requires K bytes Array Size R * C * K bytesArrangement Row-Major Ordering A[0][0]A[0][C-1] A[R-1][0] A[R-1][C-1] int A[R][C]; A [0] A [0] [C-1] A [1] [0] A [1] [C-1] A [R-1] [0] A [R-1] [C-1] 4*R*C Bytes

16 – 16 – CSCE 212H Spring 2012 Nested Array Row Access Row Vectors A[i] is array of C elements Each element of type T Starting address – base address of A + i * C * K A [i] [0] A [i] [C-1] A[i] A [R-1] [0] A [R-1] [C-1] A[R-1] A A [0] A [0] [C-1] A[0] int A[R][C]; A+i*C*4A+(R-1)*C*4

17 – 17 – CSCE 212H Spring 2012 Nested Array Row Access Code Row Vector pgh[index] is array of 5 int ’s Starting address pgh+20*indexCode Computes and returns address Compute as pgh + 4*(index+4*index) int *get_pgh_zip(int index) { return pgh[index]; } # %eax = index leal (%eax,%eax,4),%eax# 5 * index leal pgh(,%eax,4),%eax# pgh + (20 * index)

18 – 18 – CSCE 212H Spring 2012 Nested Array Element Access Array Elements Array Elements A[i][j] is element of type T Address of A[i][j] is base-of A + (i * C + j) * K Base-of A = starting address of array &A[0][0] C = number of columns = number of elements in a row K = size of individual element A [i] [j] A [i] [j] A[i] A [R-1] [0] A [R-1] [C-1] A[R-1] A A [0] A [0] [C-1] A[0] A+i*C*4A+(R-1)*C*4 A+(i*C+j)*4

19 – 19 – CSCE 212H Spring 2012 Nested Array Element Access Code Array Elements pgh[index][dig] is int Address: pgh + 20*index + 4*digCode Computes address pgh + 4*dig + 4*(index+4*index) movl performs memory reference int get_pgh_digit (int index, int dig) { return pgh[index][dig]; } # %ecx = dig # %eax = index leal 0(,%ecx,4),%edx# 4*dig leal (%eax,%eax,4),%eax# 5*index movl pgh(%edx,%eax,4),%eax# *(pgh + 4*dig + 20*index)

20 – 20 – CSCE 212H Spring 2012 struct rec { int i; int a[3]; int *p; }; Assembly # %eax = val # %edx = r movl %eax,(%edx)# Mem[r] = val void set_i(struct rec *r, int val) { r->i = val; } Structures Concept Contiguously-allocated region of memory Refer to members within structure by names Members may be of different types Accessing Structure Member Memory Layout iap 0416 20

21 – 21 – CSCE 212H Spring 2012 struct rec { int i; int a[3]; int *p; }; # %ecx = idx # %edx = r leal 0(,%ecx,4),%eax# 4*idx leal 4(%eax,%edx),%eax# r+4*idx+4 int * find_a (struct rec *r, int idx) { return &r->a[idx]; } Generating Pointer to Struct. Member Generating Pointer to Array Element Offset of each structure member determined at compile time iap 0416 r + 4 + 4*idx r

22 – 22 – CSCE 212H Spring 2012 struct rec { int i; int a[3]; int *p; }; # %edx = r movl (%edx),%ecx# r->i leal 0(,%ecx,4),%eax# 4*(r->i) leal 4(%edx,%eax),%eax# r+4+4*(r->i) movl %eax,16(%edx)# Update r->p void set_p(struct rec *r) { r->p = &r->a[r->i]; } Structure Referencing (Cont.) C Code ia 0416 Element i iap 0416

23 – 23 – CSCE 212H Spring 2012 Alignment Aligned Data Primitive data type requires K bytes Address must be multiple of K Required on some machines; advised on IA32 treated differently by Linux and Windows! Motivation for Aligning Data Memory accessed by (aligned) double or quad-words Inefficient to load or store datum that spans quad word boundaries Virtual memory very tricky when datum spans 2 pagesCompiler Inserts gaps in structure to ensure correct alignment of fields

24 – 24 – CSCE 212H Spring 2012 Specific Cases of Alignment Size of Primitive Data Type: 1 byte (e.g., char) no restrictions on address 2 bytes (e.g., short ) lowest 1 bit of address must be 0 2 4 bytes (e.g., int, float, char *, etc.) lowest 2 bits of address must be 00 2 8 bytes (e.g., double ) Windows (and most other OS’s & instruction sets): »lowest 3 bits of address must be 000 2 Linux: »lowest 2 bits of address must be 00 2 »i.e., treated the same as a 4-byte primitive data type 12 bytes ( long double ) Linux: »lowest 2 bits of address must be 00 2 »i.e., treated the same as a 4-byte primitive data type

25 – 25 – CSCE 212H Spring 2012 struct S1 { char c; int i[2]; double v; } *p; Satisfying Alignment with Structures Offsets Within Structure Must satisfy element’s alignment requirement Overall Structure Placement Each structure has alignment requirement K Largest alignment of any element Initial address & structure length must be multiples of K Example (under Windows): K = 8, due to double element ci[0]i[1]v p+0p+4p+8p+16p+24 Multiple of 4Multiple of 8

26 – 26 – CSCE 212H Spring 2012 Linux vs. Windows Windows (including Cygwin): K = 8, due to double elementLinux: K = 4; double treated like a 4-byte data type struct S1 { char c; int i[2]; double v; } *p; ci[0]i[1]v p+0p+4p+8p+16p+24 Multiple of 4Multiple of 8 ci[0]i[1] p+0p+4p+8 Multiple of 4 v p+12p+20 Multiple of 4

27 – 27 – CSCE 212H Spring 2012 Overall Alignment Requirement struct S2 { double x; int i[2]; char c; } *p; struct S3 { float x[2]; int i[2]; char c; } *p; p+0p+12p+8p+16 Windows : p+24 Linux : p+20 ci[0]i[1]xci[0]i[1] p+0p+12p+8p+16p+20 x[0]x[1] p+4 p must be multiple of: 8 for Windows 4 for Linux p must be multiple of 4 (in either OS)

28 – 28 – CSCE 212H Spring 2012 Ordering Elements Within Structure struct S4 { char c1; double v; char c2; int i; } *p; struct S5 { double v; char c1; char c2; int i; } *p; c1iv p+0p+20p+8p+16p+24 c2c1iv p+0p+12p+8p+16 c2 10 bytes wasted space in Windows 2 bytes wasted space

29 – 29 – CSCE 212H Spring 2012 Arrays of Structures Principle Allocated by repeating allocation for array type In general, may nest arrays & structures to arbitrary depth a[0] a+0 a[1]a[2] a+12a+24a+36 a+12a+20a+16a+24 struct S6 { short i; float v; short j; } a[10]; a[1].ia[1].ja[1].v

30 – 30 – CSCE 212H Spring 2012 Linux Memory Layout Stack Runtime stack (8MB limit)Heap Dynamically allocated storage When call malloc, calloc, newDLLs Dynamically Linked Libraries Library routines (e.g., printf, malloc ) Linked into object code when first executedData Statically allocated data E.g., arrays & strings declared in codeText Executable machine instructions Read-only Upper 2 hex digits of address Red Hat v. 6.2 ~1920MB memory limit FF BF 7F 3F C0 80 40 00 Stack DLLs Text Data Heap 08

31 – 31 – CSCE 212H Spring 2012 Linux Memory Allocation Linked BF 7F 3F 80 40 00 Stack DLLs Text Data 08 Some Heap BF 7F 3F 80 40 00 Stack DLLs Text Data Heap 08 More Heap BF 7F 3F 80 40 00 Stack DLLs Text Data Heap 08 Initially BF 7F 3F 80 40 00 Stack Text Data 08

32 – 32 – CSCE 212H Spring 2012 Text & Stack Example (gdb) break main (gdb) run Breakpoint 1, 0x804856f in main () (gdb) print $esp $3 = (void *) 0xbffffc78 Main Address 0x804856f should be read 0x0804856fStack Address 0xbffffc78 Initially BF 7F 3F 80 40 00 Stack Text Data 08

33 – 33 – CSCE 212H Spring 2012 Dynamic Linking Example (gdb) print malloc $1 = { } 0x8048454 (gdb) run Program exited normally. (gdb) print malloc $2 = {void *(unsigned int)} 0x40006240 Initially Code in text segment that invokes dynamic linker Address 0x8048454 should be read 0x08048454Final Code in DLL region Linked BF 7F 3F 80 40 00 Stack DLLs Text Data 08

34 – 34 – CSCE 212H Spring 2012 Memory Allocation Example char big_array[1<<24]; /* 16 MB */ char huge_array[1<<28]; /* 256 MB */ int beyond; char *p1, *p2, *p3, *p4; int useless() { return 0; } int main() { p1 = malloc(1 <<28); /* 256 MB */ p2 = malloc(1 << 8); /* 256 B */ p3 = malloc(1 <<28); /* 256 MB */ p4 = malloc(1 << 8); /* 256 B */ /* Some print statements... */ }

35 – 35 – CSCE 212H Spring 2012 Example Addresses $esp0xbffffc78 p3 0x500b5008 p1 0x400b4008 Final malloc0x40006240 p40x1904a640 p20x1904a538 beyond 0x1904a524 big_array 0x1804a520 huge_array 0x0804a510 main()0x0804856f useless() 0x08048560 Initial malloc0x08048454 BF 7F 3F 80 40 00 Stack DLLs Text Data Heap 08

36 – 36 – CSCE 212H Spring 2012 C operators OperatorsAssociativity () [] ->.left to right ! ~ ++ -- + - * & (type) sizeofright to left * / %left to right + -left to right >left to right >=left to right == !=left to right &left to right ^left to right |left to right &&left to right ||left to right ?:right to left = += -= *= /= %= &= ^= != >=right to left,left to right Note: Unary +, -, and * have higher precedence than binary forms

37 – 37 – CSCE 212H Spring 2012 C pointer declarations int *p p is a pointer to int int *p[13] p is an array[13] of pointer to int int *(p[13]) p is an array[13] of pointer to int int **p p is a pointer to a pointer to an int int (*p)[13] p is a pointer to an array[13] of int int *f() f is a function returning a pointer to int int (*f)() f is a pointer to a function returning int int (*(*f())[13])() f is a function returning ptr to an array[13] of pointers to functions returning int int (*(*x[3])())[5] x is an array[3] of pointers to functions returning pointers to array[5] of ints

38 – 38 – CSCE 212H Spring 2012 Internet Worm and IM War November, 1988 Internet Worm attacks thousands of Internet hosts. How did it happen? July, 1999 Microsoft launches MSN Messenger (instant messaging system). Messenger clients can access popular AOL Instant Messaging Service (AIM) servers AIM server AIM client AIM client MSN client MSN server

39 – 39 – CSCE 212H Spring 2012 Internet Worm and IM War (cont.) August 1999 Mysteriously, Messenger clients can no longer access AIM servers. Microsoft and AOL begin the IM war: AOL changes server to disallow Messenger clients Microsoft makes changes to clients to defeat AOL changes. At least 13 such skirmishes. How did it happen? The Internet Worm and AOL/Microsoft War were both based on stack buffer overflow exploits! many Unix functions do not check argument sizes. allows target buffers to overflow.

40 – 40 – CSCE 212H Spring 2012 String Library Code Implementation of Unix function gets No way to specify limit on number of characters to read Similar problems with other Unix functions strcpy : Copies string of arbitrary length scanf, fscanf, sscanf, when given %s conversion specification /* Get string from stdin */ char *gets(char *dest) { int c = getc(); char *p = dest; while (c != EOF && c != '\n') { *p++ = c; c = getc(); } *p = '\0'; return dest; }

41 – 41 – CSCE 212H Spring 2012 Vulnerable Buffer Code int main() { printf("Type a string:"); echo(); return 0; } /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ gets(buf); puts(buf); }

42 – 42 – CSCE 212H Spring 2012 Buffer Overflow Executions unix>./bufdemo Type a string:123 123 unix>./bufdemo Type a string:12345 Segmentation Fault unix>./bufdemo Type a string:12345678 Segmentation Fault

43 – 43 – CSCE 212H Spring 2012 Buffer Overflow Stack echo: pushl %ebp# Save %ebp on stack movl %esp,%ebp subl $20,%esp# Allocate space on stack pushl %ebx# Save %ebx addl $-12,%esp# Allocate space on stack leal -4(%ebp),%ebx# Compute buf as %ebp-4 pushl %ebx# Push buf on stack call gets# Call gets... /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ gets(buf); puts(buf); } Return Address Saved %ebp [3][2][1][0] buf %ebp Stack Frame for main Stack Frame for echo

44 – 44 – CSCE 212H Spring 2012 Buffer Overflow Stack Example Before call to gets unix> gdb bufdemo (gdb) break echo Breakpoint 1 at 0x8048583 (gdb) run Breakpoint 1, 0x8048583 in echo () (gdb) print /x *(unsigned *)$ebp $1 = 0xbffff8f8 (gdb) print /x *((unsigned *)$ebp + 1) $3 = 0x804864d 8048648:call 804857c 804864d:mov 0xffffffe8(%ebp),%ebx # Return Point Return Address Saved %ebp [3][2][1][0] buf %ebp Stack Frame for main Stack Frame for echo 0xbffff8d8 Return Address Saved %ebp [3][2][1][0] buf Stack Frame for main Stack Frame for echo bffff8 0804864d xx

45 – 45 – CSCE 212H Spring 2012 Buffer Overflow Example #1 Before Call to gets Input = “123” No Problem 0xbffff8d8 Return Address Saved %ebp [3][2][1][0] buf Stack Frame for main Stack Frame for echo bffff8 0804864d 00333231 Return Address Saved %ebp [3][2][1][0] buf %ebp Stack Frame for main Stack Frame for echo

46 – 46 – CSCE 212H Spring 2012 Buffer Overflow Stack Example #2 Input = “12345” 8048592:push %ebx 8048593:call 80483e4 # gets 8048598:mov 0xffffffe8(%ebp),%ebx 804859b:mov %ebp,%esp 804859d:pop %ebp# %ebp gets set to invalid value 804859e:ret echo code: 0xbffff8d8 Return Address Saved %ebp [3][2][1][0] buf Stack Frame for main Stack Frame for echo bfff0035 0804864d 34333231 Return Address Saved %ebp [3][2][1][0] buf %ebp Stack Frame for main Stack Frame for echo Saved value of %ebp set to 0xbfff0035 Bad news when later attempt to restore %ebp

47 – 47 – CSCE 212H Spring 2012 Buffer Overflow Stack Example #3 Input = “12345678” Return Address Saved %ebp [3][2][1][0] buf %ebp Stack Frame for main Stack Frame for echo 8048648:call 804857c 804864d:mov 0xffffffe8(%ebp),%ebx # Return Point 0xbffff8d8 Return Address Saved %ebp [3][2][1][0] buf Stack Frame for main Stack Frame for echo 38373635 08048600 34333231 Invalid address No longer pointing to desired return point %ebp and return address corrupted

48 – 48 – CSCE 212H Spring 2012 Malicious Use of Buffer Overflow Input string contains byte representation of executable code Overwrite return address with address of buffer When bar() executes ret, will jump to exploit code void bar() { char buf[64]; gets(buf);... } void foo(){ bar();... } Stack after call to gets() B return address A foo stack frame bar stack frame B exploit code pad data written by gets()


Download ppt "Lecture 9 Aggregate Data Organization Topics Pointers Aggregate Data Array layout in memory Structures February 14, 2012 CSCE 212 Computer Architecture."

Similar presentations


Ads by Google