Download presentation

Published byMatthew Lloyd Modified over 6 years ago

1
**Solving Systems of Equations By Substitution – Easier**

Dr. Fowler CCM Solving Systems of Equations By Substitution – Easier

2
**Solving a system of equations by substitution**

Step 1: Solve an equation for one variable. Pick the easier equation. The goal is to get y= ; x= ; a= ; etc. Step 2: Substitute Put the equation solved in Step 1 into the other equation. Step 3: Solve the equation. Get the variable by itself. Step 4: Plug back in to find the other variable. Substitute the value of the variable into the equation. Step 5: Check your solution. Substitute your ordered pair into BOTH equations.

3
**EXAMPLE 1 Solve by substitution:**

The second is solved for X. Substitute this into OTHER equation for X: Substitute found y into other equation: The solution set found by the substitution method will be the same as the solution found by graphing. The solution set is the same; only the method is different. ALWAYS put answer in Alphabetical order. (x,y)

4
**2) Solve the system using substitution**

x + y = 5 y = 3 + x Step 1: Solve an equation for one variable. The second equation is already solved for y! Step 2: Substitute x + y = 5 x + (3 + x) = 5 2x + 3 = 5 2x = 2 x = 1 Step 3: Solve the equation.

5
**2) Solve the system using substitution**

x + y = 5 y = 3 + x x + y = 5 (1) + y = 5 y = 4 Step 4: Plug back in to find the other variable. (1, 4) (1) + (4) = 5 (4) = 3 + (1) Step 5: Check your solution. The solution is (1, 4). What do you think the answer would be if you graphed the two equations?

6
**3) Solve the system using substitution**

x = 3 – y x + y = 7 Step 1: Solve an equation for one variable. The first equation is already solved for x! Step 2: Substitute x + y = 7 (3 – y) + y = 7 3 = 7 The variables were eliminated!! This is a special case. Does 3 = 7? FALSE! Step 3: Solve the equation. When the result is FALSE, the answer is NO SOLUTIONS.

7
**4) Solve the system using substitution**

2x + y = 4 4x + 2y = 8 Step 1: Solve an equation for one variable. The first equation is easiest to solved for y! y = -2x + 4 4x + 2y = 8 4x + 2(-2x + 4) = 8 Step 2: Substitute 4x – 4x + 8 = 8 8 = 8 This is also a special case. Does 8 = 8? TRUE! Step 3: Solve the equation. When the result is TRUE, the answer is INFINITELY MANY SOLUTIONS.

8
**Example 5) Solve the following system of equations using the substitution method.**

y = 3x – 4 and 6x – 2y = 4 The first equation is already solved for y. Substitute this into second equation. 6x – 2y = 4 6x – 2(3x – 4) = 4 (substitute) 6x – 6x + 8 = 4 (use distributive property) 8 = (simplify the left side) Does 8=4? FALSE. Examples like this – the answer is NO SOLUTION Ø. If you graphed them, they would be PARALLEL LINES.

9
**EXAMPLE 6 Solve the system by the substitution method.**

The second is solved for X. Substitute this into OTHER equation for X: Substitute found y into other equation:

10
Example #7: y = 4x 3x + y = -21 Step 1: Solve one equation for one variable. y = 4x (This equation is already solved for y.) Step 2: Substitute the expression from step one into the other equation. 3x + y = -21 3x + 4x = -21 Step 3: Simplify and solve the equation. 7x = -21 x = -3

11
y = 4x 3x + y = -21 Step 4: We found x = -3. Now, substitute this into either original equation to find y: y = 4x (easiest) y = 4(-3) y = -12 Solution to the system is (-3, -12).

12
**Excellent Job !!! Well Done**

13
Stop Notes Do Worksheet

Similar presentations

© 2022 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google