Presentation is loading. Please wait.

Presentation is loading. Please wait.

The search for an electric dipole moment of the neutron at PSI Jochen Krempel ETH Zürich 1Jochen Krempel14.10.2015 FFK Budapest On behalf of the nEDM collaboration.

Similar presentations


Presentation on theme: "The search for an electric dipole moment of the neutron at PSI Jochen Krempel ETH Zürich 1Jochen Krempel14.10.2015 FFK Budapest On behalf of the nEDM collaboration."— Presentation transcript:

1 The search for an electric dipole moment of the neutron at PSI Jochen Krempel ETH Zürich 1Jochen Krempel14.10.2015 FFK Budapest On behalf of the nEDM collaboration at PSI

2 13 Institutions 13 Institutions 7 Countries 7 Countries 48 Members 48 Members 11 PhD students 11 PhD students The collaboration 14.10.2015 FFK Budapest Jochen Krempel 2

3 Outline Short Motivation Principles of nEDM measurement UCN Source Experiment & upgrades Data blinding Performance Outlook 3 Jochen Krempel 14.10.2015 FFK Budapest

4 4 Jochen Krempel Baryon Asymmetry of the Universe Sakharov 1967:CP-violation [JETP Lett. 5 (1967) 24] We live in a matter dominated universe Observed (WMAP) Expected (SM) [Riotto et al. 1999 Ann.Rev.Nucl.Part.Sci. 49 ] [E. Komatsu et al. 2011 ApJS 192]

5 14.10.2015 FFK Budapest 5 Jochen Krempel EDM violates CP A permanent EDM of any fundamental particle violates CP PCT Having T-violation And assuming CPT invariance  CP must be violated Note: magnetic field is a pseudo vector (as spin)   does NOT violate CP Magnetic field or  is not necessary for CP violation. But a nice tool to control the spin. Different coupling to external fields  Different particle However, a neutron is different from anti-neutron. Use alternative way

6 14.10.2015 FFK Budapest 6 Jochen Krempel History of nEDM Lamoreaux, Golub in “Lepton dipole moments“ Roberts, Marciano (eds.) 2010 World Scientific Publishing current best nEDM limit: d n < 2.9·10 -26 e cm (90% C.L.) C.A.Baker et al., PRL 97, 131801 (2006) Sensitivity goals at PSI Intermediate: d n < 5 x 10 -27 e cm (95% C.L.) Final: d n < 5 x 10 -28 e cm (95% C.L.) A. Serebrov ILL – Gatchina TUM ILL RAL ORNL TRIUMF F. Piegsa ESS

7 Principles of nEDM measurement How to measure precession? pickup coil  not enough signal  Measure polarization of neutrons 2 sequential measurements E,B (anti-)parallel  Measure precession frequency twice 7 Jochen Krempel 14.10.2015 FFK Budapest

8 Principles II: Ramsey technique 8 Jochen Krempel 14.10.2015 FFK Budapest Spin up neutrons  /2 flip pulse Free precession  /2 flip pulse External clock Neutron clock  

9 Sensitivity Sqrt(N) and T compete (repetition rate). T is more important  Last Decades: Trap better than beam Trap walls limit E Storage time   Long T = low N Depolarization rate t 2  Long T = low  14.10.2015 FFK Budapest Jochen Krempel 9

10 14.10.2015 FFK Budapest 10 Jochen Krempel The apparatus ~1m diameter x 1.5m length 50cm diameter x 12cm height

11 ultracold neutrons - UCN UCN < 300neV ~ 8m/s ~ 3 mK > 50 nm ! thermal (25 meV) 2200 m/s 300 K 0.18 nm cold (5 meV) 1000 m/s 60 K 0.4 nm UCN ( 50 nm hence the name Neutrons with E kin < 300 neV are storeable e.g. air molecules at 20 ºC: ~400 m/s E. Fermi, 1946, Ya. B. Zeldovich Sov. Phys. JETP 9, 1389 (1959) vn≤vCvn≤vC vn>vCvn>vC vnvn surface description via a material optical potential Density is low  no particle-particle interaction Elastic collisions with walls  no thermalization 14.10.2015 FFK BudapestJochen Krempel11

12 Ultracold neutrons (UCN) can be stored - storage properties are material dependent - Ni, Ni 58, Be, DLC, steel Gravity Material Magnet for polarized UCN 60 neV T -1 magnetic V m = -  B V g = m n gh gravitation 100 neV m -1 < 250neV 300neV = 5 T one polarization 300neV = 3m 14.10.2015 FFK BudapestJochen Krempel12

13 Neutron production via proton spallation on lead UCN Source Proton Accelerator 590 MeV Cyclotron 2.2 mA beam current nEDM 2 experimental areas / 3 beamlines kicker to UCN 14.10.2015 FFK BudapestJochen Krempel13

14 Sketch of the PSI UCN source pulsed 1.3 MW p-beam 590 MeV, 2.2 mA, 1% duty cycle spallation target (Pb/Zr) (~ 8 neutrons/proton) heavy water moderator → thermal neutrons 3.6m 3 D 2 O cold UCN-converter ~30 dm 3 solid D 2 at 5 K tank 7 m DLC coated UCN storage vessel height 2.5 m, ~ 2 m 3 UCN guides towards experimental areas 8.6m(S) / 6.9m(W) SV-shutter cryo-pump 14.10.2015 FFK BudapestJochen Krempel14

15 Measurement in area West with detector at beam-port pilot pulse filling storage vessel emptying storage vessel up to 2x10 7 UCN /pulse closing shutter typical exp filling time ~30s

16 UCN-Source progress in 2015 Melting + re-freezing (4h every 4 days) Increase duty cycle (average current) 14.10.2015 FFK Budapest Jochen Krempel 16

17 Magnetic field stability E polarity change every ~5 hours. Keep B-field stable Passive mu-Metal shield 4 layers ~ a few * 1000 suppression Active Coils (SFC) Measure fluctuations Hg co-magnetometer Cs magnetometers 14.10.2015 FFK Budapest Jochen Krempel 17

18 14.10.2015 FFK Budapest 18 Jochen Krempel The apparatus - magnetic shielding 1uT

19 SFC - part I 6 rectangular coils 6m * 8m, 20 windings 10 x 3 axis Fluxgate sensors earth field compensation / sultan field compensation gradient compensation not yet fully possible (lack of number of coils) static stabilisation over time Pair wise using inverse matrix  Sensor selection 14.10.2015 FFK Budapest 19 Jochen Krempel

20 SFC - part II >5x shielding 5.. 5000 s of real perturbations 14.10.2015 FFK Budapest 20 Afach et al., J. Appl. Phys. 116, 084510 (2014) Jochen Krempel

21 14.10.2015 FFK Budapest 21 Jochen Krempel The apparatus – Hg co magnetometer

22 Hg co-magnetometer 14.10.2015 FFK Budapest Jochen Krempel 22 UCN Hg Centre of mass offset: ~2mm mismatch in case of dBz / dz 8Hz

23 Cs-magnetometer array Pump and probe at 45°  about 20ms Extra cell, special coating. High statistics High bandwidth (  L =3.5kHz) Array of 16 sensors HV-versions included  dB / dz information Vector-information (prototype) 14.10.2015 FFK Budapest Jochen Krempel 23

24 14.10.2015 FFK Budapest 24 Jochen Krempel The apparatus – Hg co magnetometer 132kV / 12cm

25 Improve Depolarization rate 14.10.2015 FFK Budapest Jochen Krempel 25 Depolarization rate t 2  Long T = low  33 Trimcoils to tune the field. But how? Not published yet. Use Cesium-array, do some fancy things, get Trimcoil settings, Enjoy!

26 R-curve analysis Scan actively dB/dz by applying TrimCoils 14.10.2015 FFK Budapest Jochen Krempel 26 B0 up B0 down Prior to Cs-magnetometer array the only way to determine 0-gradient.

27 Gyro magnetic ratio S. Afach et al., PLB 739 (2014) 128 14.10.2015 FFK Budapest Jochen Krempel 27

28 B 0 up λ f Earth Earth rotation correction 14.10.2015 FFK Budapest Jochen Krempel 28

29 Spin-echo spectroscopy A spin-echo recovers energy dependent dephasing for T = 2t 1 in a magnetic field with negative vertical gradient. gzgz 14.10.2015 FFK Budapest Jochen Krempel 29

30 Estimation of UCN energy spectrum Access to vertical gradient (absolute value) Spin-echo results S.Afach et al., accepted by PRL( 02. October 2015), arXiv:1506.00446arXiv:1506.00446 14.10.2015 FFK Budapest Jochen Krempel 30

31 R-curve revisited Polarization and R-curve using UCN spin-echo spectrum match data taken at T=180s Gravitational depolarization of ultracold neutrons: Comparison with data S. Afach et al. Phys. Rev. D 92, 052008 – Published 22 September 2015 14.10.2015 FFK Budapest Jochen Krempel 31

32 Systematic effects 14.10.2015 FFK Budapest Jochen Krempel 32 16 CsM array High precision field mapping

33 Why blinding Avoid psychological bias during data analysis Experimenter’s bias is defined as the unintended influence on a measurement towards prior results or theoretical expectations. Which cut to apply When to stop analysis/searching for bugs "We're more than one sigma from zero; we have to look at it some more, because we must be doing something wrong..." Outside reputation  some secrecy is necessary, simply trusting everybody is not enough. Do NOT protect against: Criminal energy, e.g. somebody installing spyware on DAQ computer JR Klein A Roodman BLIND ANALYSIS IN NUCLEAR AND PARTICLE PHYSICS Annual Review of Nuclear and Particle Science 2005 Vol. 55: 141-163 DOI: 10.1146/annurev.nucl.55.090704.151521 arXiv:physics/0312102v1 Blind Analysis in Particle Physics Aaron Roodman 14.10.2015 FFK Budapest Jochen Krempel 33 Blind analysis: Hide results to seek the truth R. MacCoun, S. Perlmutter Nature 526, 187–189 (08 October 2015) doi:10.1038/526187a

34 Blinding offset Many experiments have blinding factor nEDM measures value + uncertainty From that upper limit is derived We blind the raw data by shifting the value  Blinding offset 14.10.2015 FFK Budapest Jochen Krempel 34

35 Why is blinding so difficult Easy concept: Modify frequency of neutron spin flip (synchronous to HV-polarity) Must not influence measurement Fear of systematic effects is large Independently advised by review committee Write down a false frequency Immediately visible in co-magnetometers Fake the reading of a co-magnetometer Impossible to do consistently for Hg and Cs  immediately visible 35 Jochen Krempel 14.10.2015 FFK Budapest

36 How do we blind I 36 Jochen Krempel14.10.2015 FFK Budapest i /

37 How de we blind II 14.10.2015 FFK Budapest Jochen Krempel 37 i /

38 How do we blind III 14.10.2015 FFK Budapest Jochen Krempel 38 Known (because chosen) phase/frequency of spin flip E-field sign of B0 direction, sign of Detector configuration sign of SpinFlipper 1 N and  are fitted per run (~1day)

39 Secrecy of data files Raw data (secret) + blinded data (public) Backup scheme: Encrypt secret data with RSA (asymmetric) Use public key for encryption Private key is kept in sealed envelope Do not trust encryption -> keep additional copy (NOT encrypted) at hidden place 39 Jochen Krempel 14.10.2015 FFK Budapest Slow control Main DAQ Neutron Intern PSI PSI -AFS France PSI tape GRIS Poland

40 Performance 2015 14.10.2015 FFK Budapest Jochen Krempel 40

41 Performance 2015 14.10.2015 FFK Budapest Jochen Krempel 41

42 Pseudo magnetic field from a spin-dependent exotic force Axion Window where UCN are a sensitive probe “Constraining interactions mediated by axion- like particles with ultracold neutrons” Physics Letters B Volume 745, 18 May 2015, Pages 58–63 10.1016/j.physletb.2015.04.024 Poster by Beatrice Franke

43 Light axions – axion wind 14.10.2015 FFK Budapest Jochen Krempel 43 Y. V. Stadnik and V. V. Flambaum PHYSICAL REVIEW D 89, 043522 (2014)

44 The future - n2EDM Double Chamber E-B parallel antiparallel at same time Horizontal guide Higher N due to better use of spectrum Higher E More Cs magnetometers (vector information) 14.10.2015 FFK Budapest Jochen Krempel 44

45 Summary The collaboration produced many papers during the last year. Since August 2015 very stable running with best daily sensitivity world wide. Systematic effects studied in detail. 14.10.2015 FFK Budapest Jochen Krempel 45

46 Acknowledgements Special thanks for slides to Philipp Schmidt-Wellenburg Bernhard Lauss Martin Fertl Georg Bison Michał Rawlik Dieter Ries The whole collaboration. 14.10.2015 FFK Budapest Jochen Krempel 46 Thank you for your attention

47 Backup Slides 14.10.2015 FFK Budapest Jochen Krempel 47

48 Simultaneous spin detection ~20% increase in sensitivity (for 2014) sequential A device for simultaneous spin analysis of ultracold neutrons EPJ A Accepted 12 October 2015

49 Cs OPM Servo 14.10.2015 FFK Budapest Jochen Krempel 49

50 UCN Production – “Conventional” 300 K 30 K 10 -13  0 [cm -2 s -1 ] cm -3  (UCN)=70x10 -13  0 [cm -2 s -1 ] cm -3 Using an adequate moderator and extracting the low-energy tail of the Maxwell-Boltzmann distribution: (first UCN observed in the 1960 - Russia) 00 Moderator Experiment liquid deuterium 14.10.2015 FFK BudapestJochen Krempel50

51 4 He F. Atchison et al., PRL99(2007)262502 D2D2 C.A. Baker et al., PLA308(2003)67 dispersion relation How can we obtain more UCN ? Superthermal UCN production: Golub & Pendlebury 14.10.2015 FFK BudapestJochen Krempel51

52 Hg-Level Scheme 14.10.2015 FFK Budapest Jochen Krempel 52

53 Allan Deviation with VCsM 14.10.2015 FFK Budapest Jochen Krempel 53

54 Secrecy of blinding offset Blinding program needs to know it Randomly generate offset, store it with (2 nd ) public key private key is injected into blinding program during compile process Blinding offset is never written in clear text (nobody can accidentally read it) Blinding code can be modified at any time and recompiled - one trustful person necessary to keep private key 54 Jochen Krempel 14.10.2015 FFK Budapest

55 Secrecy implementation Step 0) Get their public key openssl rsa -in id_rsa -pubout -outform pem > id_rsa.pub.pem Step 1) Generate a 256 bit (32 byte) random key openssl rand -base64 32 > key.bin Step 2) Encrypt the key (asymmetrically) openssl rsautl -encrypt -inkey id_rsa.pub.pem -pubin -in key.bin -out key.bin.enc Step 3) Actually Encrypt our large file (symmetrically) openssl enc -aes-256-cbc -salt -in SECRET_FILE -out SECRET_FILE.enc -pass file:./key.bin Step 4) Put key.bin.enc and SECRET_FILE.enc to Archive Decryption (in 2 years) openssl rsautl -decrypt -inkey id_rsa.pem -in key.bin.enc -out key.bin openssl enc -d -aes-256-cbc -in SECRET_FILE.enc -out SECRET_FILE -pass file:./key.bin 55 Jochen Krempel 14.10.2015 FFK Budapest

56 BACKUP RSA algorithm https://de.wikipedia.org/wiki/RSA-Kryptosystem Calculate private key Chose 2 large prime numbers p = 11 and q = 13 RSA-Modulus is N = p * q = 143 Euler's totient function phi(N) = phi(143) = (p-1)(q-1) = 120 Chose e coprime to 120. We chose e = 23. e = 23 and N = 143 are the public key. Calculate public key (Inverse of e): e * d + k * phi(N) = 1 = ggT(e,phi(N)) (Greates Common Divisor) 23 * d + k * 120 = 1 = ggT(23,120). Extended Euclidean algorithm  d=47 and k=-9 23 * 47 + (-9 )* 120 = 1 d=47 is the secret key, k can be disposed encryption m=7 with public key (e,N) (m < N) c = m ^ e mod N 7 ^ 23 mod 143 = 2 decrypt m = c ^ d mod N 2 ^ 47 mod 143 = 7 56 Jochen Krempel 14.10.2015 FFK Budapest


Download ppt "The search for an electric dipole moment of the neutron at PSI Jochen Krempel ETH Zürich 1Jochen Krempel14.10.2015 FFK Budapest On behalf of the nEDM collaboration."

Similar presentations


Ads by Google