Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4 Lecture 4 Section: 4.7. Counting Fundamental Rule of Counting: If an event occurs m ways and if a different event occurs n ways, then the events.

Similar presentations


Presentation on theme: "Chapter 4 Lecture 4 Section: 4.7. Counting Fundamental Rule of Counting: If an event occurs m ways and if a different event occurs n ways, then the events."— Presentation transcript:

1 Chapter 4 Lecture 4 Section: 4.7

2 Counting Fundamental Rule of Counting: If an event occurs m ways and if a different event occurs n ways, then the events together occur a total of m·n ways. Let us recall our example of rolling 2 dice. How many possible outcomes are possible. We know that one die has six sides and since we have two of them, then by the fundamental rule of counting we get 6×6=36. Also recall a husband and wife that want to have 3 children. Since at each birth there are two possible outcomes (boy, girl), then the number of different combinations of births is 2×2×2=8

3 3. At CSU-Long Beach, the password to log into www.my.csulb.edu consists of 2 letters and then 4 digits. For example, ab1234 is a password. How many different passwords are possible.www.my.csulb.edu 4. How many different combinations of heads and tails can be made if you flip a coin 4 times? Example #1: You have 3 shirts, 5 pair of shoes and 6 pair of pants. How many different outfits can be made from the given information? 3·5·6=90 2. An ATM code consists of only 4 digits. How many different codes are possible? 10 · 10 · 10 · 10 = 10 4 = 10,000

4 6. A UPS man has 7 locations to make deliveries. How many different routes are possible to make all of his deliveries? In this case we would have to use the Factorial Rule. n! Where n is the number of items that can be arranged. 5. What if we had a 5 digit home security code that had an additional property that digits could not repeat. How many different codes are possible? 7. If we wanted to rank the top 10 movies of 2010, how many possible outcomes are there?

5 Example 8: In a state lottery, a player wins or shares in the jackpot by selecting the correct 6-number combination when 6 different numbers from 1 through 42 are drawn. If a player selects one particular 6-number combination, how many arrangements of 6 numbers out of 42 total numbers are possible. In this case we will use the method called the Combination Rule. This case tells us that the order of the outcome does not matter. We must have a total of n different items available. (42) We must select r of the n items (6 of 42). We must consider rearrangements of the same items to be the same. That is the arrangement 123456 = 654321 = 512346 = 321654 and so on.

6 So the answer to our question n=42 and r=6. Question: What is the probability of winning the lottery if to win you pick 6 numbers out of 42. Combination Rule Formula. ( Order is not taken into consideration)

7 9. What if the order of the numbers does matter? Better said, what if the order of the numbers is taken into consideration? We saw in the previous example that the six numbers 123456 was the same as 654321. However, if we take into consideration the order of the numbers, then 123456 is not the same as 654321 because the way the numbers are ordered are totally different. Permutation Rule: (Order is taken into consideration) So if we take into consideration the order that the numbers are drawn, then

8 10. Say I have 4 markers in my book bag. I want to only select 2 of the 4 markers. Markers: B(black), R(red), G(green), P(purple) B,R B,G B,P R,G R,P G,P B,R R,B B,G G,B B,P P,B R,G G,R R,P P,R G,P P,G

9 13. In a horse race involving 10 horses, how many ways can first, second, and third place be decided? 12. In how many ways can a sorority of 20 members select a president, vice president and treasury, assuming that the same person cannot hold more than one office. 11. Recall the example: What if we had a 5 digit home security code that had an additional property that digits could not repeat. How many different codes are possible?

10 14. A certain department consists of 10 males and 8 females. How many different ways can this department form a committee of members consisting of: a. 5 people. b. 3 male and 2 female. 15. In a class of 40 students, how many ways can a study group of 6 students be arranged?


Download ppt "Chapter 4 Lecture 4 Section: 4.7. Counting Fundamental Rule of Counting: If an event occurs m ways and if a different event occurs n ways, then the events."

Similar presentations


Ads by Google