Presentation is loading. Please wait.

Presentation is loading. Please wait.

Experimente für den astrophysikalischen p-Prozess J. Hasper, IKP, niversität zu Köln, AG Zilges L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental.

Similar presentations


Presentation on theme: "Experimente für den astrophysikalischen p-Prozess J. Hasper, IKP, niversität zu Köln, AG Zilges L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental."— Presentation transcript:

1 Experimente für den astrophysikalischen p-Prozess J. Hasper, IKP, niversität zu Köln, AG Zilges L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Experimental facilities for reaction studies in Nuclear Astrophysics in Cologne L. Netterdon, M. Elvers, J. Endres, A. Hennig*, A. Sauerwein*, F. Schlüter, and A. Zilges Institut für Kernphysik, Universität zu Köln 496 th WE-Heraeus Seminar on Astrophysics with modern small-scale accelerators Bad Honnef, February 08 th, 2012 Supported by the DFG under contract DFG (ZI 510/5-1, INST 216/544-1) *Member of the Bonn-Cologne Graduate School of Physics and Astronomy

2 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Outline Motivation Counting setup for activation measurements –Example: 168 Yb(,n) In-beam HORUS –Example: 92 Mo(p, ), 92 Mo(, ) CologneAMS Summary

3 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Motivation measurement of ion-induced reactions experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei e.g. for 168 Yb( : E Gamow 7 – 11 MeV << E coul 24 MeV

4 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Motivation σ 0.1 – 100 μb very sensitive determination of small cross sections needed measurement of ion-induced reactions experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei e.g. for 168 Yb( : E Gamow 7 – 11 MeV << E coul 24 MeV activation / in-beam / AMS

5 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Motivation σ 0.1 – 100 μb very sensitive determination of small cross sections needed measurement of ion-induced reactions experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei e.g. for 168 Yb( : E Gamow 7 – 11 MeV << E coul 24 MeV activation / in-beam / AMS

6 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Counting Setup 2 HPGe clover detectors passive background suppression by Cu and Pb low natural background covers large solid angle

7 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Counting Setup 2 HPGe clover detectors passive background suppression by Cu and Pb low natural background covers large solid angle

8 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Counting Setup 2 HPGe clover detectors passive background suppression by Cu and Pb low natural background covers large solid angle different target geometries possible accurate target positioning to 0.1 mm

9 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Clover detectors 4 independent crystals rel. efficiency of 120 % G. Duchêne et al., NIM A 432 (1999)

10 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Clover detectors 4 independent crystals rel. efficiency of 120 % advantages: –higher count rates –reduced summing effects –Compton polarimetry –add-back algorithms –claim coincidences between crystals and detectors G. Duchêne et al., NIM A 432 (1999)

11 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Counting Setup absolute photopeak 1332 keV 5 % distance to end cap: 13 mm

12 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 4 inputs ADC Trigger / Filter FPGA DSP System FPGA 4 BGO Veto inputs Data acquisition XIA LLC, Users Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03 digital data acquisition XIA DGF-4C modules 14-bit pipeline ADC sampling of preamplifier output at 80 MHz listmode data

13 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Data acquisition 2 m 1.8 m digital data acquisition XIA DGF-4C modules 14-bit pipeline ADC sampling of preamplifier output at 80 MHz listmode data

14 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Data acquisition digital data acquisition XIA DGF-4C modules 14-bit pipeline ADC sampling of preamplifier output at 80 MHz listmode data cost / space saving very good energy resolution higher count rates 20 cm 6 cm

15 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Digitizer – basic design Detector ADCPipeline ADC

16 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Digitizer – basic design Detector ADCPipeline ADC What to do? ?

17 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Digitizer – basic design Detector ADCPipeline ADC What to do? ? write every trace to hard disk for offline analysis 500 GB / hour / channel

18 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Digitizer – basic design Detector ADCPipeline ADC What to do? ? write every trace to hard disk for offline analysis 500 GB / hour / channel signal processing in hardware using combination of Field Programmable Gate Array (FPGA) Digital Signal Processor (DSP)

19 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Digitizer – basic design Detector ADC FPGADSP Pipeline ADC Field Programmable Gate Array applies filter algorithms Digital Signal Processor determines energy and time

20 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Signal processing - requirements Trigger: select signals of interest Timing: when did the event occur relative to others? Pile-Up: reject events, if they were too close to determine energy Energy: calculate difference between maximum and baseline

21 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Signal processing - requirements Trigger: select signals of interest Timing: when did the event occur relative to others? Pile-Up: reject events, if they were too close to determine energy Energy: calculate difference between maximum and baseline

22 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Trapezoidal filter algorithm XIA LLC, Users Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03

23 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 0 L=5 S2S2 G=3 S1S1 S = S 2 – S 1 = 0 S t Trapezoidal filter algorithm

24 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 0 L=5G=3 S2S2 S1S1 S t S = S 2 – S 1 = 0 Trapezoidal filter algorithm

25 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 0 Trapezoidal filter algorithm

26 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 1 Trapezoidal filter algorithm

27 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 2 Trapezoidal filter algorithm

28 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 3 Trapezoidal filter algorithm

29 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 4 Trapezoidal filter algorithm

30 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 5 Trapezoidal filter algorithm

31 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 5 Trapezoidal filter algorithm

32 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 5 Trapezoidal filter algorithm

33 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 5 Trapezoidal filter algorithm

34 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics V t 1 0 S2S2 S1S1 S t S = S 2 – S 1 = 0 Trapezoidal filter algorithm

35 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Fast and slow filter algorithm XIA LLC, Users Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03 fast filter time determination slow filter energy determination

36 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Energy resolution time constant most important for good energy resolution adjust parameter to get best peak shape and resolution courtesy of N. Warr

37 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Activation measurement of 168 Yb(α,n) 168 Yb 170 Yb 171 Yb 169 Yb 169 Lu 170 Lu 171 Lu 172 Lu 173 Hf 172 Hf 171 Hf 170 Hf motivation: improvement of reaction network at 168 Yb

38 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Activation measurement of 168 Yb(α,n) 168 Yb 170 Yb 171 Yb 169 Yb 169 Lu 170 Lu 171 Lu 172 Lu 173 Hf 172 Hf 171 Hf 170 Hf motivation: improvement of reaction network at 168 Yb problems: – 172 Hf( ) needs unstable target ( )

39 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Activation measurement of 168 Yb(α,n) 168 Yb 170 Yb 171 Yb 169 Yb 169 Lu 170 Lu 171 Lu 172 Lu 173 Hf 172 Hf 171 Hf 170 Hf motivation: improvement of reaction network at 168 Yb problems: – 172 Hf( ) needs unstable target – 168 Yb( ): low cross section weak & low-energetic transitions ( )

40 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Activation measurement of 168 Yb(α,n) 168 Yb 170 Yb 171 Yb 169 Yb 169 Lu 170 Lu 171 Lu 172 Lu 173 Hf 172 Hf 171 Hf 170 Hf ( α,n) motivation: improvement of reaction network at 168 Yb problems: – 172 Hf( ) needs unstable target – 168 Yb( ): low cross section weak & low-energetic transitions measure 168 Yb( α,n) to improve Yb OMP

41 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Activation measurement of 168 Yb(α,n) 168 Yb 170 Yb 171 Yb 169 Yb 169 Lu 170 Lu 171 Lu 172 Lu 173 Hf 172 Hf 171 Hf 170 Hf ( α,n) motivation: improvement of reaction network at 168 Yb cross section sensitive to and neutron width T. Rauscher, NON-SMOKER WEB,5.8.1dw

42 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Experimental PTB Braunschweig -beam

43 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Experimental PTB Braunschweig -beam Cooling trap Target Water cooling U = -300V E = 12.9 MeV – 15.1 MeV activation period 5 h – 20 h current 600 nA target thickness 230 – 450 -beam

44 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Activation measurement of 168 Yb(α,n) E = MeV counting period 23 h 840 keV 667 keV 740 keV 935 keV 835 keV 168 keV 95 keV 5 ms g.s. 171 Yb 168 Yb( n) 171 Lu ε T 1/2 = 8.24 d 171 Hf

45 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Results: 168 Yb(,n) 171 Hf no calculation reproduces energy dependence correctly overprediction of cross sections up to one order of magnitude T. Rauscher, NON-SMOKER WEB,5.8.1dw A.J. Koning, S. Hilaire and M.C. Duijvestijn,TALYS-1.2 PRELIMINARY

46 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Limitations of activation technique Activation technique not applicable in many cases because of stable reaction products inconvenient half-lives weak intensities Only 20% of stable nuclei accessible In-beam / AMS technique to overcome limitations (, ) not accessible

47 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Tandem accelerator in Cologne 10 MV Tandem ion accelerator beam intensities up to 1 µA (p) / few 100 nA ( -particles) restart in spring 2012 after complete refurbishment high efficiency HPGe detector array HORUS for in-beam spectroscopy

48 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics In-beam HORUS array of 14 HPGe detectors up to 6 equipped with BGO shields absolute photopeak 1332 keV: 2 % determination of angular distributions coincidence techniques for background suppression digital data acquisition in preparation

49 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics In-beam HORUS Test experiment for 92 Mo(p, ) 92 Mo 94 Mo 95 Mo 93 Mo 93 Tc 94 Tc 95 Tc 96 Tc 97 Ru 96 Ru 95 Ru 94 Ru (p, ), + activation measurement can be performed simultaneously comparison with existing data from an activation experiment possible (T. Sauter et al., PRC 55 (1997) 3127) E p = 2.8 – 3.3 MeV Gamow window: 1.6 – 3.6 MeV current 200 pnA T 1/2 ( 93 Tc g ) =2.75 h

50 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics partial cross sections 92 Mo(p, ) 93 Tc 93 Tc E p = 3300 keV Q = 4087 keV de-excitation of compound state 19 F(p, ) 16 O 27 Al(p, ) 28 Si 27 Al(p,p) In-beam HORUS

51 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Partial cross sectionstotal cross section 92 Mo(p, ) 93 Tc 93 Tc E p = 3300 keV Q = 4087 keV de-excitation of compound state transitions to ground state 19 F(p, ) 16 O 27 Al(p, ) 28 Si 27 Al(p,p) In-beam HORUS

52 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Partial cross sectionsTotal cross sectionproduction of 1 st excited state 92 Mo(p, ) 93 Tc 93 Tc E p = 3300 keV Q = 4087 keV de-excitation of compound state transitions to ground state transitions to 1 st excited state 19 F(p, ) 16 O 27 Al(p, ) 28 Si 27 Al(p,p) In-beam HORUS

53 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Results: 92 Mo(p, ) PRELIMINARY

54 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Results: 92 Mo(p, ) PRELIMINARY

55 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Results: 92 Mo(p, ) PRELIMINARY

56 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Results: 92 Mo(p, ) PRELIMINARY

57 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 92 Mo 94 Mo 95 Mo 93 Mo 93 Tc 94 Tc 95 Tc 96 Tc 97 Ru 96 Ru 95 Ru 94 Ru (, ) In-beam HORUS Test experiment for 92 Mo(, ) comparison with in-beam measurement using 4 NaI detector (to be published) energies ~ MeV Gamow window: 5.5 – 8.6 MeV current ~ 30 pnA

58 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 92 Mo(, ) 96 Ru E = 9300 keV Q = 1692 keV Many background reactions: Target chamber 27 Al(,n) 30 P 27 Al(,p) 30 Si 27 Al(, ) 27 Al Tantalum coating of chamber In-beam HORUS

59 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 92 Mo(, ) 96 Ru E = 9300 keV Q = 1692 keV Many background reactions: Target chamber 27 Al(,n) 30 P 27 Al(,p) 30 Si 27 Al(, ) 27 Al Target contaminants 13 C(,n) 16 O 17 O(,n) 20 Ne 18 O(,n) 21 Ne Tantalum coating of chamber High vacuum or Cooling Finger In-beam HORUS

60 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 92 Mo(, ) 96 Ru E = 9300 keV Q = 1692 keV Many background reactions: Target chamber 27 Al(,n) 30 P 27 Al(,p) 30 Si 27 Al(, ) 27 Al Competitive reactions 92 Mo(,p) 95 Tc Target contaminants 13 C(,n) 16 O 17 O(,n) 20 Ne 18 O(,n) 21 Ne Decay of radioactive reaction products Tantalum coating of chamber High vacuum or Cooling Finger In-beam HORUS

61 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 92 Mo(, ) 96 Ru E = 9300 keV Q = 1692 keV Many background reactions: Target chamber 27 Al(,n) 30 P 27 Al(,p) 30 Si 27 Al(, ) 27 Al Competitive reactions 92 Mo(,p) 95 Tc Target contaminants 13 C(,n) 16 O 17 O(,n) 20 Ne 18 O(,n) 21 Ne Decay of radioactive reaction products Tantalum coating of chamber High vacuum or Cooling Finger + use coincidence techniques In-beam HORUS

62 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Coincidence with E =833 keV E [keV] No coincidence 92 Mo(, ) 96 Ru E [keV] In-beam HORUS

63 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Coincidence with E =833 keV E [keV] No coincidence 92 Mo(, ) 96 Ru E [keV] In-beam HORUS

64 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Coincidence with E =833 keV No coincidence 92 Mo(, ) 96 Ru E [keV] In-beam HORUS

65 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Cologne AMS Tandetron accelerator with 6 MV terminal voltage standard isotopes: 10 Be, 14 C, 26 Al, 36 Cl, 41 Ca, 129 I (geosciences, pre- and protohistory) ample beam time reserved for nuclear physics applications Universität zu Köln

66 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Cologne AMS Status: first 14 C test measurement successful in February 2011 start of standard operation in fall 2011

67 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Cologne AMS Isotopes Precision for acceptance Measured precision 10 Be / 9 Be3 % at % 14 C / 12 C0.5 % at % 26 Al / 27 Al3 % at % 36 Cl / 35 Cl3 % at % courtesy of S. Heinze results from first performance test for standard cosmogenic nuclides

68 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Cologne AMS Isotopes Precision for acceptance Measured precision 10 Be / 9 Be3 % at % 14 C / 12 C0.5 % at % 26 Al / 27 Al3 % at % 36 Cl / 35 Cl3 % at % courtesy of S. Heinze results from first performance test for standard cosmogenic nuclides prime example for Nuclear Astrophysics: 144 Sm( ) 148 Gd

69 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Summary & Outlook several techniques to study (p, ) and (, ) reactions of astrophysical relevance on stable nuclei

70 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Summary & Outlook several techniques to study (p, ) and (, ) reactions of astrophysical relevance on stable nuclei activation technique –counting setup with 2 HPGe clover detectors – coincidences and advantages of digital data acquisition in-beam technique –HORUS array provides large amount of information accelerator mass spectrometry

71 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Summary & Outlook several techniques to study (p, ) and (, ) reactions of astrophysical relevance on stable nuclei activation technique –counting setup with 2 HPGe clover detectors – coincidences and advantages of digital data acquisition in-beam technique –HORUS array provides large amount of information accelerator mass spectrometry provide experimental data base for (p, ) and (, ) reactions derive reliable global properties, e.g., optical model potentials

72 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics Experimental Facilities for Reaction Studies in Nuclear Astrophysics in Cologne V. Derya, M. Elvers, J. Endres, A. Hennig, J. Mayer, S. Pascu, S. Pickstone, A. Sauerwein, F. Schlüter, M. Spieker, K. O. Zell, and A. Zilges U. Giesen H.W. Becker and D. Rogalla

73 L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental facilities for reaction studies in Nuclear Astrophysics 168 Yb( 171 Hf - Sensitivity


Download ppt "Experimente für den astrophysikalischen p-Prozess J. Hasper, IKP, niversität zu Köln, AG Zilges L. Netterdon, IKP, Universität zu Köln, AG ZilgesExperimental."

Similar presentations


Ads by Google