Presentation is loading. Please wait.

Presentation is loading. Please wait.

Machine/Assembler Language Control Flow & Compiling Function Calls Noah Mendelsohn Tufts University Web:

Similar presentations


Presentation on theme: "Machine/Assembler Language Control Flow & Compiling Function Calls Noah Mendelsohn Tufts University Web:"— Presentation transcript:

1 Machine/Assembler Language Control Flow & Compiling Function Calls Noah Mendelsohn Tufts University Email: noah@cs.tufts.edunoah@cs.tufts.edu Web: http://www.cs.tufts.edu/~noah COMP 40: Machine Structure and Assembly Language Programming – Fall 2015

2 © 2010 Noah Mendelsohn Goals for today – learn:  Review intro to machine & assembler lang from last time  Accessing registers and memory – addressing modes  Control flow  Function calls 2

3 © 2010 Noah Mendelsohn 3 Remember We will teach some highlights of machine/assembler code here in class but you must take significant time to learn and practice on your own! Suggestions for teaching yourself: Read Bryant and O’Hallaron carefully Remember that 64 bit section was added later Look for online reference material Some linked from HW5 Write examples, compile with –S, figure out resulting.s file!

4 © 2010 Noah Mendelsohn Review & A Few Updates

5 © 2010 Noah Mendelsohn Machine code  Simple instructions – each does small unit of work  Stored in memory  Bitpacked into compact binary form  Directly executed by transistor/hardware logic 5 Operation code (opcode)Operand 1Operand 2??? Opcode is only required field On Intel architecture, instruction length varies

6 © 2010 Noah Mendelsohn X86-64 / AMD 64 / IA 64 General Purpose Registers 6 031 %eax %ecx %edx %ebx %esi %edi %esp %ebp %ah $al %ax %ch $cl %cx %dh $dl %dx %bh $bl %bx %si %di %sp %bp %rax %rcx %rdx %rbx %rsi %rdi %rsp %rbp 63 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 0 63

7 © 2010 Noah Mendelsohn General Purpose Registers 7 %ah $al %ax%eax %rax 0 63

8 © 2010 Noah Mendelsohn General Purpose Registers 8 %ah $al %ax%eax %rax 0 63 mov $123,%rax

9 © 2010 Noah Mendelsohn General Purpose Registers 9 %ah $al %ax%eax %rax 0 63 mov $123,%ax

10 © 2010 Noah Mendelsohn General Purpose Registers 10 $al %ah %ax%eax %rax 0 63 mov $123,%eax

11 © 2010 Noah Mendelsohn Classes of AMD 64 registers  General purpose registers –16 registers, 64 bits each –Used to compute integer and pointer values –Used for integer call/return values to functions  XMM registers –16 Registers, 128 bits each –Used to compute float/double values, and for parallel integer computation –Used to pass double/float call/return values  X87 Floating Point registers –8 registers, 80 bits each –Used to compute, pass/return long double 11

12 © 2010 Noah Mendelsohn Machine code for a simple function 12 int times16(int i) { return i * 16; } Remember: This is what’s really in memory and what the machine executes! 89 f8 c1 e0 04 c3

13 © 2010 Noah Mendelsohn Machine code for a simple function 13 int times16(int i) { return i * 16; } But what does it mean?? Does it really implement the times16 function? 89 f8 c1 e0 04 c3

14 © 2010 Noah Mendelsohn Machine code for a simple function 14 int times16(int i) { return i * 16; } 0:89 f8 mov %edi,%eax 2:c1 e0 04 shl $0x4,%eax 5:c3 retq

15 © 2010 Noah Mendelsohn Machine code for a simple function 15 int times16(int i) { return i * 16; } 0:89 f8 mov %edi,%eax 2:c1 e0 04 shl $0x4,%eax 5:c3 retq Load i into result register %eax

16 © 2010 Noah Mendelsohn Machine code for a simple function 16 int times16(int i) { return i * 16; } 0:89 f8 mov %edi,%eax 2:c1 e0 04 shl $0x4,%eax 5:c3 retq Shifting left by 4 is quick way to multiply by 16.

17 © 2010 Noah Mendelsohn Machine code for a simple function 17 int times16(int i) { return i * 16; } 0:89 f8 mov %edi,%eax 2:c1 e0 04 shl $0x4,%eax 5:c3 retq Return to caller, which will look for result in %eax REMEMBER: you can see the assembler code for any C program by running gcc with the –S flag. Do it!!

18 © 2010 Noah Mendelsohn 18 INTERPRETER Software or hardware that does what the instructions say COMPILER Software that converts a program to another language ASSEMBLER Like a compiler, but the input assembler language is (mostly)1-to-1 with machine instructions

19 © 2010 Noah Mendelsohn Moving Data, Calculating Values and Working With Pointers

20 © 2010 Noah Mendelsohn Addressing modes 20 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movq %rax, %rbx

21 © 2010 Noah Mendelsohn Register-to-register copy 21 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 Assume %rax holds variable x and %rbx holds y, then his implements: long x, y; y = x; movq %rax, %rbx

22 © 2010 Noah Mendelsohn Controlling the size 22 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 Assume %rax holds variable x and %rbx holds y, then his implements: long x, y; y = x; movq %rax, %rbx movq“quad” length move b  byte w  2 bytes (short) l  long (4 bytes not 8!) q  quad (8 bytes)

23 © 2010 Noah Mendelsohn Memory-to-register copy 23 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movq (%rax), %rbx Assume %rax holds &x and %rbx holds y, then his implements: long *xp = &x; long y; y = *xp;

24 © 2010 Noah Mendelsohn Register-to-register copy 24 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movq (%rax), %rbx Assume %rax holds &x and %rbx holds y, then his implements: long *xp = &x; long y; y = *xp; By the way, the source or the target can reference memory…but not both. Copying from memory to memory takes two instructions (into register and back out).

25 © 2010 Noah Mendelsohn Address arithmetic 25 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movq 0x10(%rax), %rbx struct s { long m1, m2, m3, m4) } *sp long y; y = sp -> m3;

26 © 2010 Noah Mendelsohn Array addressing 26 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movq 0x4089a0(, %rax, 8,) %rbx long arr[1000]; /* assume at 0x4089a0 */ long i; /* array index in %rax*/ long y; /* move target in %rbx */ y = arr[i]; /* all in one assembler mov! */

27 © 2010 Noah Mendelsohn Examples 27 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movl (%ebx, %ecx, 1), %edx // edx <- *(ebx + (ecx * 1)) leal (%ebx, %ecx, 1), %edx // edx <- (ebx + (ecx * 1))

28 © 2010 Noah Mendelsohn Examples 28 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movl (%ebx, %ecx, 1), %edx // edx <- *(ebx + (ecx * 1)) leal (%ebx, %ecx, 1), %edx // edx <- (ebx + (ecx * 1)) movl Moves the data at the address: similar to: char *ebxp; char edx = ebxp[ecx]

29 © 2010 Noah Mendelsohn Examples 29 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movl (%ebx, %ecx, 1), %edx // edx <- *(ebx + (ecx * 1)) leal (%ebx, %ecx, 1), %edx // edx <- (ebx + (ecx * 1)) leal Moves the address itself: similar to: char *ebxp; char *edxp = &(ebxp[ecx]);

30 © 2010 Noah Mendelsohn Examples 30 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movl (%ebx, %ecx, 1), %edx // edx <- *(ebx + (ecx * 1)) leal (%ebx, %ecx, 1), %edx // edx <- (ebx + (ecx * 1)) movl (%ebx, %ecx, 4), %edx // edx <- *(ebx + (ecx * 4)) leal (%ebx, %ecx, 4), %edx // edx <- (ebx + (ecx * 4)) scale factors support indexing larger types similar to: int *ebxp; int edxp = ebxp[ecx];

31 © 2010 Noah Mendelsohn Examples 31 %rax // contents of rax is data (%rax) // data pointed to by rax 0x10(%rax) // get *(16 + rax) $0x4089a0(, %rax, 8) // Global array index // of 8-byte things (%ebx, %ecx, 2) // Add base and scaled index 4(%ebx, %ecx, 2) // Add base and scaled // index plus offset 4 movl (%ebx, %ecx, 1), %edx // edx <- *(ebx + (ecx * 1)) leal (%ebx, %ecx, 1), %edx // edx <- (ebx + (ecx * 1)) movl (%ebx, %ecx, 4), %edx // edx <- *(ebx + (ecx * 4)) leal (%ebx, %ecx, 4), %edx // edx <- (ebx + (ecx * 4)) scale factors support indexing larger types similar to: int *ebxp; int edxp = &(ebxp[ecx]);

32 © 2010 Noah Mendelsohn Control Flow

33 © 2010 Noah Mendelsohn Simple jumps 33.L4: …code here… j.L4 // jump back to L4

34 © 2010 Noah Mendelsohn Conditional jumps 34.L4: movq(%rdi,%rdx), %rcx leaq(%rax,%rcx), %rsi testq%rcx, %rcx cmovg%rsi, %rax addq$8, %rdx cmpq%r8, %rdx jne.L4 // conditional: jump iff %r8 != %rdx This technique is the key to compiling if statements, for loops, while loops, etc. …code here… Question: How does the jne get the result of the cmp?

35 © 2010 Noah Mendelsohn Conditional jumps 35.L4: movq(%rdi,%rdx), %rcx leaq(%rax,%rcx), %rsi testq%rcx, %rcx cmovg%rsi, %rax addq$8, %rdx cmpq%r8, %rdx jne.L4 // conditional: jump iff %r8 != %rdx This technique is the key to compiling if statements, for loops, while loops, etc. …code here… Answer: There is a flags register that tracks positive, negative, equal, etc. Question: How does the jne get the result of the cmp?

36 © 2010 Noah Mendelsohn The flags register tracks comparisions and results 36 Example: Zero flag set if last result is zero or last compare is equal Conditional jumps and moves test the flags

37 © 2010 Noah Mendelsohn Compare/Set flags Machine code for a simple function 37 void ifelse(int a, int b) { if (a > b) func1(a); else func2(b); } ifelse: subq$8, %rsp cmpl%esi, %edi jle.L2 callfunc1 jmp.L1.L2: movl%esi, %edi.p2align 4,,6 callfunc2.L1: addq$8, %rsp.p2align 4,,2 ret

38 © 2010 Noah Mendelsohn Jump if <= 0 Machine code for a simple function 38 void ifelse(int a, int b) { if (a > b) func1(a); else func2(b); } ifelse: subq$8, %rsp cmpl%esi, %edi jle.L2 callfunc1 jmp.L1.L2: movl%esi, %edi.p2align 4,,6 callfunc2.L1: addq$8, %rsp.p2align 4,,2 ret

39 © 2010 Noah Mendelsohn Jump always Machine code for a simple function 39 void ifelse(int a, int b) { if (a > b) func1(a); else func2(b); } ifelse: subq$8, %rsp cmpl%esi, %edi jle.L2 callfunc1 jmp.L1.L2: movl%esi, %edi.p2align 4,,6 callfunc2.L1: addq$8, %rsp.p2align 4,,2 ret

40 © 2010 Noah Mendelsohn Calling Functions

41 © 2010 Noah Mendelsohn Why have a standard “linkage” for calling functions?  Functions are compiled separately and linked together  We need to standardize enough that function calls will succeed  Note: optimizing compilers may “cheat” when caller and callee are in the same source file –More on this later 41 See course notes on “Calls and Returns”“Calls and Returns”

42 © 2010 Noah Mendelsohn An interesting example 42 int fact(int n) { if (n == 0) return 1; else return n * fact(n - 1); } See course notes on “Calls and Returns”“Calls and Returns”

43 © 2010 Noah Mendelsohn The process memory illusion  Process thinks it's running in a private space  Separated into segments, from address 0  Stack: memory for executing subroutines  Heap: memory for malloc/new  Global static variables  Text segment: where program lives 43

44 © 2010 Noah Mendelsohn The process memory illusion  Process thinks it's running in a private space  Separated into segments, from address 0  Stack: memory for executing subroutines  Heap: memory for malloc/new  Global static variables  Text segment: where program lives 44 Stack Text (code) Static initialized Static uninitialized Heap (malloc’d) argv, environ Loaded with your program 0 We’re about to study in depth how function calls use the stack.

45 © 2010 Noah Mendelsohn Function calls on Linux/AMD 64  Caller pushes return address on stack  Where practical, arguments passed in registers  Exceptions: –Structs, etc. –Too many –What can’t be passed in registers is at known offsets from stack pointer!  Return values –In register, typically %rax for integers and pointers –Exception: structures  Each function gets a stack frame –Leaf functions that make no calls may skip setting one up 45

46 © 2010 Noah Mendelsohn Arguments/return values in registers 46 Arguments and return values passed in registers when types are suitable and when there aren’t too many Return values usually in %rax, %eax, etc. Callee may change these and some other registers! MMX and FP 87 registers used for floating point Read the specifications for full details! Operand Size Argument Number 123456 64%rdi%rsi%rdx%rcx%r8%r9 32%edi%esi%edx%ecx%r8d%r9d 16%di%si%dx%cx%r8w%r9w 8%dil%sil%dl%cl%r8b%r9b

47 © 2010 Noah Mendelsohn The stack – general case 47 Before call ???? %rsp Arguments Return address After callq %rsp Arguments %rsp If callee needs frame ???? Return address Args to next call? Callee vars sub $0x{framesize},%rsp Arguments framesize

48 © 2010 Noah Mendelsohn A simple function 48 unsigned int times2(unsigned int a) { return a * 2; } times2: leaq(%rdi,%rdi), %rax ret Double the argument …and put it in return value register

49 © 2010 Noah Mendelsohn The stack – general case 49 Before call ???? %rsp Arguments Return address After callq %rsp Arguments %rsp If callee needs frame ???? Return address Args to next call? Callee vars sub $0x{framesize},%rsp Arguments framesize Must be multiple of 16 when a function is called! But now it’s not a multiple of 16… Here too!

50 © 2010 Noah Mendelsohn The stack – general case 50 Before call ???? %rsp Arguments Return address After callq %rsp Arguments %rsp If callee needs frame ???? Return address Waste 8 bytes sub $8,%rsp Arguments If we’ll be calling other functions with no arguments, very common to see sub $8,%rsp to re-establish alignment Must be multiple of 16 when a function is called!

51 © 2010 Noah Mendelsohn A function that calls another 51 extern unsigned int times2(unsigned int a); unsigned int times8(unsigned int i) { return 4 * times2(i); } times8: subq$8, %rsp calltimes2 salq$2, %rax addq$8, %rsp ret times2 can assume %rsp is multiple of 16

52 © 2010 Noah Mendelsohn Factorial Revisited 52 int fact(int n) { if (n == 0) return 1; else return n * fact(n - 1); } fact:.LFB2: pushq %rbx.LCFI0: movq %rdi, %rbx movl $1, %eax testq %rdi, %rdi je.L4 leaq -1(%rdi), %rdi call fact imulq %rbx, %rax.L4: popq %rbx ret

53 © 2010 Noah Mendelsohn Function calls on Linux/AMD 64 (cont.)  Much of what you’ve seen can be skipped for “leaf” functions in the call tree  Inlining: –If small procedure is in same source file (or included header): just merge the code –Unless function is static… I.e. private to source file, the compiler still needs to create the normal version, in case anyone outside calls it!  Optimizing compilers “cheat” –Don’t build full stack –Leave return address for called function (last thing A calls B; last thing B does is call C  B leaves return address on stack and branches to C instead of calling it…when C does normal return, it goes straight back to A!) This is tail call optimization. –Many other wild optimizations, always done so other functions can’t tell anything unusual is happening! 53

54 © 2010 Noah Mendelsohn Optimized version 54 int fact(int n) { if (n == 0) return 1; else return n * fact(n - 1); } fact:.LFB2: pushq %rbx.LCFI0: movq %rdi, %rbx movl $1, %eax testq %rdi, %rdi je.L4 leaq -1(%rdi), %rdi call fact imulq %rbx, %rax.L4: popq %rbx ret Lightly optimized = O1 (what we saw before) fact:.LFB2: testq %rdi, %rdi movl $1, %eax je.L6.p2align 4,,7.L5: imulq %rdi, %rax subq $1, %rdi jne.L5.L6: rep ; ret Heavily optimized = O2 What happened to the recursion?!?!? This version doesn’t need to create a stack frame either!

55 © 2010 Noah Mendelsohn Getting the details on function call linkages  Bryant and O’Halloran has excellent introduction –Watch for differences between 32 and 64 bit  The official specification: –System V Application Binary Interface: AMD64 Architecture Processor Supplement –Find it at: http://www.cs.tufts.edu/comp/40/readings/amd64-abi.pdfhttp://www.cs.tufts.edu/comp/40/readings/amd64-abi.pdf –See especially sections 3.1 and 3.2 55

56 © 2010 Noah Mendelsohn Summary  C code compiled to assembler  Data moved to registers for manipulation  Conditional and jump instructions for control flow  Stack used for function calls  Compilers play all sorts of tricks when compiling code 56


Download ppt "Machine/Assembler Language Control Flow & Compiling Function Calls Noah Mendelsohn Tufts University Web:"

Similar presentations


Ads by Google