Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Quantum Atom Weirder and Weirder. Wave-Particle Duality Louis de Broglie (1892-1987)‏

Similar presentations


Presentation on theme: "The Quantum Atom Weirder and Weirder. Wave-Particle Duality Louis de Broglie (1892-1987)‏"— Presentation transcript:

1 The Quantum Atom Weirder and Weirder

2 Wave-Particle Duality Louis de Broglie (1892-1987)‏

3 Wave-Particle Duality Louis de Broglie (1892-1987)‏ De Broglie Hypothesis: Any moving particle has an associated wave nature (1924). E k =hf true for electrons and all matter

4 Wave-Particle Duality De Broglie Hypothesis: Any moving particle has an associated wave nature (1924). E k =hf true for electrons and all matter This means that light is not the only weird thing, all matter is weird De Broglie's Hypothesis tested in 1927 by Cliffton Davisson and Lester Germer of Bell Laboratories. They document electron diffraction

5 Nobel Prize De Broglie won in 1929 for his work Davisson and Germer won in 1937 for their work

6 The Impact De Broglie's hypothesis meant it was possible to predict the behavior of matter (including subatomic particles) using wave equations

7 The Impact De Broglie's hypothesis meant it was possible to predict the behavior of matter (including subatomic particles) using wave equations This idea was crucial for the development of quantum mechanics

8 Werner Heisenberg Electrons interact with photons because they have similar wavelengths.

9 Werner Heisenberg Electrons interact with photons because they have similar wavelengths. Photons are used to detect electrons

10 Werner Heisenberg Electrons interact with photons because they have similar wavelengths. Photons are used to detect electrons Because of the relationship, any attempt to find the velocity and position of an electron causes those quantities to change (the Heisenberg uncertainty principle)‏

11 Werner Heisenberg Electrons interact with photons because they have similar wavelengths. Photons are used to detect electrons Because of the relationship, any attempt to find the velocity and position of an electron causes those quantities to change (the Heisenberg uncertainty principle)‏ Nobel prize in Physics 1932

12 Erwin Schrödinger 1926 used the dual particle-wave nature to develop wave equations that predicted where electrons were

13 Erwin Schrödinger 1926 used the dual particle-wave nature to develop wave equations that predicted where electrons were Only waves of specific energies (particular frequencies) fit the equation—this corresponds to the energy levels that Bohr proposed

14 Erwin Schrödinger 1926 used the dual particle-wave nature to develop wave equations that predicted where electrons were Only waves of specific energies (particular frequencies) fit the equation—this corresponds to the energy levels that Bohr proposed Nobel prize in Physics 1933

15 Quantum Mechanics Based on the work of de Broglie, Heisenberg, Schrödinger, Born, Einstein and others

16 Quantum Mechanics Based on the work of de Broglie, Heisenberg, Schrödinger, Born, Einstein and others All matter behaves with both particle and wave nature

17 Quantum Mechanics Based on the work of de Broglie, Heisenberg, Schrödinger, Born, Einstein and others All matter behaves with both particle and wave nature The smaller a particle is, the more closely its behavior approaches a wave

18 Quantum Mechanics Based on the work of de Broglie, Heisenberg, Schrödinger, Born, Einstein and others All matter behaves with both particle and wave nature The smaller a particle is, the more closely its behavior approaches a wave Quantum wave equations give probability of finding an electron in a particular energy level (orbital)‏


Download ppt "The Quantum Atom Weirder and Weirder. Wave-Particle Duality Louis de Broglie (1892-1987)‏"

Similar presentations


Ads by Google