Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Geometric. rhythmic canons between theory, implementation and musical experiment by Moreno Andreatta, Thomas Noll, Carlos Agon and Gerard Assayag presentation.

Similar presentations


Presentation on theme: "The Geometric. rhythmic canons between theory, implementation and musical experiment by Moreno Andreatta, Thomas Noll, Carlos Agon and Gerard Assayag presentation."— Presentation transcript:

1 The Geometric. rhythmic canons between theory, implementation and musical experiment by Moreno Andreatta, Thomas Noll, Carlos Agon and Gerard Assayag presentation by Elaine Chew ISE 599: Spring 2004

2 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove2 Algebraic Definitions R = rhythm, represented by a locally finite set of rational numbers marking onset times dR = period of rhythm, smallest rational number s.t. R = R + dR pR = pulsation, GCD of IOI in R V = voice, a displacement of R by s = R + s S = set of all translations p = pulsation of canon, GCD(pR,pS), largest possible “tick size” for counting time in R+S.

3 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove3 Transformation to Z/Zn Convert everything element in R to integral counts of the canon’s “tick size”, i.e. r = r/p. Now R is a subset of the set of integers, Z. n = period of the new R = dR/p. By definition, if there is an onset at r  R, then there is another at r + n, r + 2n, r + 3n … Hence, we only need to store the non-repeating parts of R, i.e., a subset of Z, Z/nZ (the cyclic group, Z mod n). Note: should n be LCM(nR, nS)?

4 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove4 Generating Voices R  Z/Zn = inner rhythm S  Z/Zn = outer rhythm Vs = R + s, where s  S Example n = 16 R = (0 3 4 6 8) S = (0 1) V0 = (0 3 4 6 8), V1 = (1 4 5 7 9)

5 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove5 Types of Canons Rhythmic Tiling Canon I: Union of all Vs covers Z/Zn II: The voices are pairwise disjoint Regular Complementary Canons of Maximal Category, RCMC-Canons (VuZA, 1995) III: pR = pS

6 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove6 Canon Example * Thanks to Anja Volk for helping to obtain this example. 0 8 16 18 26 34 4 12 20 22 30 38

7 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove7 RCMC Canons Constitute a “factorization” of Z/Zn into two non-periodic subsets, R and S. Smallest such canon has period 72 and 6 voices (no cyclic group smaller than Z/72Z can be factorized into two non- periodic subsets).

8 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove8 Canon Modulation R = fundamental rhythm S = set of displacements Change S to S + t.

9 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove9 Rhythmic Re-interpretation R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) n = 72 New set of displacements if t = 16: S1 = ( 16 38 54 56 70 0 ) Note: additions are mod 72.

10 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove10 Rhythmic Re-interpretation R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) n = 72 New set of displacements if t = 16: S1 = ( 16 38 54 56 70 0 ) Note: additions are mod 72.

11 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove11 Implementation

12 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove12 Implementation  S, Modulation 1

13 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove13 Example R = ( 0 1 4 5 12 25 29 36 42 58 59 63 )

14 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove14 R = V0 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5………..12……………………..25……29……….... 36……….42……….58.59…..63 0 Modulation 1

15 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove15 R = V0 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5………..12……………………..25……29……….... 36……….42……….58.59…..63 0 Modulation 1

16 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove16 V22 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5………..12… …………………..25……29………... 36……….42……….58.59 ……..63? 22 Modulation 1

17 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove17 V22 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5………..12… …………………..25……29………... 36……….42……….58.59 ……..63? 22 Modulation 1

18 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove18 V38 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5……….12….………………….25……29……. ….36……….42………58.59..…63 38 Modulation 1

19 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove19 V38 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5……….12….………………….25……29……. ….36……….42………58.59..…63 38 Modulation 1

20 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove20 V40 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5……….12….………………….25……29…. ……..36……….42………58.59…..63 40 Modulation 1

21 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove21 V40 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5……….12….………………….25……29…. ……..36……….42………58.59…..63 40 Modulation 1

22 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove22 V54 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) ….………..25……29….……...36……….42……….58.59…..63 54 0.1…….4..5………..12……….. Modulation 1

23 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove23 V54 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) ….………..25……29….……...36……….42……….58.59…..63 54 0.1…….4..5………..12……….. Modulation 1

24 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove24 V56 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59…. 56..63 Modulation 1

25 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove25 V56 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59…. 56..63 Modulation 1

26 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove26 Done! R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S = ( 0 22 38 40 54 56 ) Modulation 1

27 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove27 Implementation  S1, Modulation 2

28 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove28 V0 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 0 0.1…….4..5………..12……………………..25……29……….... 36……….42……….58.59…..63 Modulation 2

29 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove29 V0 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 0 0.1…….4..5………..12……………………..25……29……….... 36……….42……….58.59…..63 Modulation 2

30 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove30 V16 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 16 0.1…….4..5………..12…..…………..…..25……29………... 36……….42……….58.59…….63 Modulation 2

31 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove31 V16 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 16 0.1…….4..5………..12…..…………..…..25……29………... 36……….42……….58.59…….63 Modulation 2

32 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove32 V38 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 38 0.1…….4..5……….12….………………….25……29……. ….36……….42………58.59..…63 Modulation 2

33 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove33 V38 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 38 0.1…….4..5……….12….………………….25……29……. ….36……….42………58.59..…63 Modulation 2

34 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove34 V54 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) ….………..25……29….……...36……….42……….58.59…..63 54 0.1…….4..5………..12……….. Modulation 2

35 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove35 V54 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) ….………..25……29….……...36……….42……….58.59…..63 54 0.1…….4..5………..12……….. Modulation 2

36 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove36 V56 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59…. 56..63 Modulation 2

37 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove37 V56 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 0.1…….4..5………..12……. ….……..……..25…...29….……...36………..42……….58.59…. 56..63 Modulation 2

38 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove38 V70 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 70 …….4.5.………..12……………………..25……29……….…36.. ……….42…..….58.59…..630.1 Modulation 2

39 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove39 V70 R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) 70 …….4.5.………..12……………………..25……29……….…36.. ……….42…..….58.59…..630.1 Modulation 2

40 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove40 Done! R = ( 0 1 4 5 12 25 29 36 42 58 59 63 ) S1 = (16 38 54 56 70 0 ) Modulation 2

41 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove41 Augmented Canons An affine transformation –[a,t](x) = (ax + t mod)(m*n) –where a is augmentation factor, t is summand –where R has m elements and S has n A(R), A(S) sets of augmentation factors T(R), T(S) corresponding translations R*S is all pairs of consecutive transformations | R*S | = set of all elements in R*S

42 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove42 Example R = ( [11,0] [5,1] [5,3] [11 10] ) S = ( [11,0] [5,1] [5,5] ) [a,t](0) = t mod 12 R(0) = ( 0 1 3 10 ) S(R(0)) = [ ( 0 11 9 2 ) ( 1 6 4 3 ) ( 5 10 8 7 ) ] S*R

43 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove43 R*S R = ( [11,0] [5,1] [5,3] [11 10] ) S = ( [11,0] [5,1] [5,5] ) R*S = (( [1,0] [7,1] [7,5] ) ( [7,1] [1,6] [1,2] ) ( [7,3] [1,8] [1,4] ) ( [1,10] [7,9] [7,5] ) )

44 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove44 S*R^ R = ( [11,0] [5,1] [5,3] [11 10] ) S = ( [11,0] [5,1] [5,5] ) S*R^ = (( [1,0] [7,1] [7,5] ) ( [7,11] [1,6] [1,10] ) ( [7,9] [1,4] [1,8] ) ( [1,2] [7,3] [7,7] ) ) Note that | S*R | = | R*S^ | but S*R  R*S^

45 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove45 Properties In non-augmenting case, –A(R) = (1 1 … 1) and A(S) = (1 1 … 1) –Canon duality: S*R = (R*S)^ When both (R,S) and (S,R) generate canons, –| R*S | = | S*R^ | –R*S = S*R^

46 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove46 Augmented and Dual Canons S*R(0) = (( 0 11 9 2 ) ( 1 6 4 3 ) ( 5 10 8 7 ) ) R*S^(0) = (( 0 11 7 ) ( 1 6 2 ) ( 3 8 4 ) ( 10 9 5 ) ) augmented canon dual canon

47 ISE 599: Spring 2004: April 15Andreatta et al: Geometric Groove47 Example R = ( 0 1 3 10 ) S = ([11,0] [5,1] [5,5]) V1 = s1(R) V2 = s2(R) V3 = s3(R) 0 11 33 110… 1 6 16 51 6166 76 111… 5 10 20 55 65 70 80 115…


Download ppt "The Geometric. rhythmic canons between theory, implementation and musical experiment by Moreno Andreatta, Thomas Noll, Carlos Agon and Gerard Assayag presentation."

Similar presentations


Ads by Google