Presentation is loading. Please wait.

Presentation is loading. Please wait.

Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek 2014 - 15.09.2014.

Similar presentations


Presentation on theme: "Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek 2014 - 15.09.2014."— Presentation transcript:

1 Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek hemperek@uni-bonn.deCPIX 2014 - 15.09.2014

2 Overview hemperek@uni-bonn.deCPIX 2014 - 15.09.20142 Introduction Challenges of radiation and timing requirements by example Possible solutions

3 Introduction hemperek@uni-bonn.de CPIX 2014 - 15.09.2014 3 STAR ALICE-LHC ILC STARALICE-LHCILCATLAS-LHCATLAS-HL-LHC Timing [ns]200 00020 00035025 Particle Rate [kHz/mm 2 ] 10010250100010000 Fluence [n eq /cm 2 ]> 10 12 > 10 13 10 12 2x10 15 2x10 16 Ion. Dose [Mrad]> 0.30.70.480>500 ATLAS Monolithic CMOS 25 2x10 15 2x10 16 80 >500 ? Requirements for inner pixel layers

4 hemperek@uni-bonn.deCPIX 2014 - 15.09.20144 Example case 20um 3um 18um (epi)

5 hemperek@uni-bonn.deCPIX 2014 - 15.09.20145 No radiation 10 Ohm cm - no radiation 0V (PW) 1V (NW) Substrate:10 Ohm cm NW: 1V PW: 0V Electron Concentration

6 hemperek@uni-bonn.deCPIX 2014 - 15.09.20146 radiation effects (neutrons -> traps) radiation no radiation10 14 n eq /cm 2 Substrate:10 Ohm cm NW: 1V PW: 0V Electron Concentration

7 hemperek@uni-bonn.deCPIX 2014 - 15.09.20147 STAR Experiment Ladders with 10 MAPS sensors (approx. 2×2 cm each) Ultimate Reticle size (2x2 cm²) Pixel pitch 20.7 µm Array size: 928 x 960 Integration time: 185.6 µs In pixel CDS Sensors thinned to 50 µm High Res Si option Technology: AMS 0.35u

8 hemperek@uni-bonn.deCPIX 2014 - 15.09.20148 change substrate to 2k Ohm cm NW: 1V PW: 0V Substrate:2k Ohm cm radiation no radiation10 15 n eq /cm 2 Electron Concentration

9 hemperek@uni-bonn.deCPIX 2014 - 15.09.20149 Substrate resistivity influence 2k Ohm cm 10 Ohm cm NW: 1V PW: 0V

10 hemperek@uni-bonn.deCPIX 2014 - 15.09.201410 ALICE Experiment Integrations time: <30us Substrate: hi-res epi Technology: TowerJazz 0.18um CIS To be ready by 2018

11 hemperek@uni-bonn.deCPIX 2014 - 15.09.201411 Potential difference influence Electrostatic potential Electron Velocity NW@1V NW@20V NW@1V NW@20V PW: 0V Substrate:2k Ohm cm

12 hemperek@uni-bonn.deCPIX 2014 - 15.09.201412 2k Ohm cm and potential difference Electron Concentration (10 15 n eq /cm 2 ) NW@1V NW@20V NW@1V NW@20V PW: 0V Substrate:2k Ohm cm

13 hemperek@uni-bonn.deCPIX 2014 - 15.09.201413 Influence of fill factor 20um 17um

14 hemperek@uni-bonn.deCPIX 2014 - 15.09.201414 Fill Factor influence at 10 15 n eq /cm 2 NW: 20V PW: 0V Substrate:2k Ohm cm Dose: 10 15 n eq /cm 2 Electron Velocity fill factor = 15% fill factor = 75%

15 hemperek@uni-bonn.deCPIX 2014 - 15.09.201415 Summary % of collected charge in first 10ns no radiation 10 13 n eq /cm 2 10 14 n eq /cm 2 10 15 n eq /cm 2 substrate resistivity [Ohm cm] Bias [V] Fill Factor [%] 10115 102015 2k115 2k2015 2k2075 5x10 15 n eq /cm 2

16 hemperek@uni-bonn.deCPIX 2014 - 15.09.201416 Conclusions Mind the leakage Need to be fast with charge collection Drift in electrical field New type of sensors

17 hemperek@uni-bonn.deCPIX 2014 - 15.09.201417 Hybrid Pixel Detectors Monolithic Pixels Depleted Monolithic Pixels

18 hemperek@uni-bonn.deCPIX 2014 - 15.09.201418 Enabling technologies from: www.xfab.com Sensor/Implants (<3nm gate) “High” Resistive Wafers Low Temperature Backside Process 8” hi/mid resistivity silicon wafers that will be qualified by the foundry. What is the influence of CMOS processing? (thermal donors …) Radiation hard process with as many wells as possible. High voltage tolerant. Foundry accepts some process/DRC changes! To achieve backside contact after CMOS processing. Laser activation? from: ion-beam-services.com

19 hemperek@uni-bonn.deCPIX 2014 - 15.09.201419 Technological support

20 hemperek@uni-bonn.deCPIX 2014 - 15.09.201420 Bulk process options (simple options, n-on-p) Electronics inside charge collection well  Collection node with large fill factor  rad. hard  Large sensor capacitance (DNW/PW junction!)  x-talk, noise & speed (power) penalties  Full CMOS with isolation between NW and DNW Electronics outside charge collection well  Very small sensor capacitance  low power  Potentially less rad. hard (longer drift lengths)  Full CMOS with additional deep-p implant p-substrate Deep n-well P+ p-well Charge signal Electronics (full CMOS) P+ nw p-substrate n+ p-well Charge signal Electronics (full CMOS) n+ nw deep p-well - - larger capacitance makes it more difficult for the readout

21 hemperek@uni-bonn.deCPIX 2014 - 15.09.201421 Simple device cross-section high signal (full depletion possible) fast (collection by drift) small pixels limited PMOS in active area input capacitnce dominated by deep-nwell to pwell capacitance

22 hemperek@uni-bonn.deCPIX 2014 - 15.09.201422 Something better

23 hemperek@uni-bonn.deCPIX 2014 - 15.09.201423

24 hemperek@uni-bonn.deCPIX 2014 - 15.09.201424 FD-SOI CHANGE +++

25 hemperek@uni-bonn.deCPIX 2014 - 15.09.201425 PD-SOI

26 hemperek@uni-bonn.deCPIX 2014 - 15.09.201426 Other And what about: -Oxide charging (TID) > 100 MRad -How to make readout ? Other options?

27 hemperek@uni-bonn.deCPIX 2014 - 15.09.201427 Possible scenarios for Active Sensors  Depleted Monolithic Active Pixel Sensor –HR- material (charge collection by drift)  Fully depleted MAPS (DMAPS) Diode + full analog processing Digital only FE chip Wafer to wafer bonding Diode + preamp FE chipDiode + Amp + Digital  Hybrid Pixels with “smart” diodes: - HR- or HV-CMOS as a sensor (8”) - Standard FE chip - CCPD (HVCMOS) on FE-I4  CMOS Active Sensor + Digital R/O chip - HR- or HV-CMOS sensor + CSA (+Discriminator) - Dedicated “digital only” FE chip

28 hemperek@uni-bonn.deCPIX 2014 - 15.09.201428 Conclusion Particle detection in high radiation environments based on commercial CMOS technologies looks possible Progress in technology and openness of industry for niche applications allows new concept to be realized Possible technology developments for other fields?

29 Thank you hemperek@uni-bonn.deCPIX 2014 - 15.09.201429

30 Backup

31 High Luminosity LHC Environment - Requirements hemperek@uni-bonn.deCPIX 2014 - 15.09.201431 ATLAS Phase II Letter of Intent Occupancy [%] Inner layer 1.Low power 2.Low material 3.Occupancy 4.Resolution 1.Low cost 2.Low power 3.Low material 4.Resolution hybrid pixels (65nm? + sensor?)low cost hybrid pixels or monolithic? outer Inner Outer layer

32 High Luminosity LHC Environment - Requirements hemperek@uni-bonn.deCPIX 2014 - 15.09.201432  Radiation levels:  at 5 cm : ~1500 Mrad (210 16 n eq /cm 2 )  at 25cm : ~100 Mrad (10 15 n eq /cm 2 ) * estimates for 10years of operations

33 hemperek@uni-bonn.deCPIX 2014 - 15.09.201433 different bias possibilities Substrate:2k Ohm cm Dose: 10 15 nq/cm 2

34 hemperek@uni-bonn.deCPIX 2014 - 15.09.201434 Bias @ 10 15 nq/cm 2

35 hemperek@uni-bonn.deCPIX 2014 - 15.09.201435 Trapping in irradiated silicon RD50

36 hemperek@uni-bonn.deCPIX 2014 - 15.09.201436


Download ppt "Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek 2014 - 15.09.2014."

Similar presentations


Ads by Google