Presentation is loading. Please wait.

Presentation is loading. Please wait.

Zukünftige Beschleunigerprojekte am CERN Frank Zimmermann Jahresversammlung des Kommittees für Beschleunigerphysik Darmstadt, 29 November 2013 Thanks to.

Similar presentations

Presentation on theme: "Zukünftige Beschleunigerprojekte am CERN Frank Zimmermann Jahresversammlung des Kommittees für Beschleunigerphysik Darmstadt, 29 November 2013 Thanks to."— Presentation transcript:

1 Zukünftige Beschleunigerprojekte am CERN Frank Zimmermann Jahresversammlung des Kommittees für Beschleunigerphysik Darmstadt, 29 November 2013 Thanks to R. Aleksan, R. Assmann, A. Blondel, O. Brüning, A. Butterworth, Y. Cai, R. Calaga, O. Dominguez, J. Ellis, B. Holzer, P. Janot, E. Jensen, M. Klein, M. Koratzinos, S. Myers, K. Ohmi, K. Oide, J. Osborne, L. Rossi, R. Schmidt J. Seeman, V. Telnov, R. Tomas, J. Wenninge, U. Wienands, K. Yokoya, M. Zanetti, …, r Work supported by the European Commission under Capacities 7th Framework Programme, Grant Agreement

2 LHC: pp, AA & pA Kollisionen höchster Energie pp Parameter: E CM = 14 TeV design 8 TeV in 2012 L = cm -2 s -1

3 1983 LEP Note S. Myers and W. Schnell propose twin-ring pp collider in LEP tunnel with 9-T dipoles 1991 CERN Council: LHC approval in principle 1992 EoI, LoI of experiments 1993 SSC termination 1994 CERN Council: LHC approval cooperation w.Japan,India,Russia,Canada,&US 2000 LEP completion 2006 last s.c. dipole delivered 2008 first beam 2010 first collisions at 3.5 TeV beam energy 2015 collisions at ~design energy (plan) >30 years! now is the time to plan for ~2040 LHC – historische Entstehung

4 C. Grojean, 2 nd LEP3/TLEP workshop, 18 June 2012 DIE Frage der n ä chsten Jahrzehnte

5 kreisförmige Higgs-Fabriken ep e + e - pp LHeC SAPPHiRE TLEP VHE-LHC/TLEP

6 ERL LHeC: recirculating linac with energy recovery ) Large Hadron electron Collider (LHeC) 100 MW total wall-plug power, L ep up to 2x10 34 cm -2 s -1 next LHeC workshop Chavannes-de-Bogis January 2014 confId=278903

7 two SC linacs, 3-pass up, 3-pass down; 6.4-mA 60-GeV e - s collide w. LHC p/ions, e - RF grad ~20 MV/m, 800 MHz (C=1/3 LHC allows for ion clearing gaps) A. Bogacz, O. Brüning, M. Klein, D. Schulte, F. Zimmermann, et al LHeC ERL Anlage

8 s-channel production; lower energy; no e + source few J pulse energy with ~350 nm Source: Fiber lasers and amplifiers: an ultrafast performance evolution, Jens Limpert, Thomas Schreiber, and Andreas Tünnermann, Applied Optics, Vol. 49, No. 25 (2010) power evolution of cw double-clad fiber lasers with diffraction limited beam quality over the past decade: factor 100 increase! K. Moenig et al, DESY Zeuthen passive optical cavity relaxed laser parameters physics IR laseroptical cavity Higgs-Fabrik?

9 SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons scale ~ European XFEL, about 10-20k Higgs per year Reconfigured LHeC SAPPHiRE Higgs-Fabrik 100 MW total wall-plug power, L ~6x10 32 cm -2 s -1

10 Y. Zaouter, Amplitude Systems J. Gronberg, LLNL G. Mourou, LOA; M. Velasco, Northwestern U. 10 J at 10 kHz EuCARD SAPPHiRE Day 19 February 2013 full power w/o optical cavity! industry Livermore ICAN Laseroptionen für SAPPHiRE

11 (1 year = 10 7 s at design luminosity). machineLHeCLHeC-HFSAPPHiRE luminosity [10 34 cm -2 s -1 ] 0.1 (ep)2 (ep) 0.06 ( 125 GeV) Higgs production cross section ~200 fb >1.7 pb no. Higgs/yr2k40k>10k Vergleich der ep & Higgs-Fabriken

12 European Strategy emphasizes high-energy pp & e + e - collisions

13 J. Osborne, C. Waaijer, CERN, ARUP & GADZ, submitted to European Strategy Symposium 2012 ein km Tunnel bei Genf TLEP/VHE-LHC

14 Of course, it should not be the size of an accelerator, but its costs which must be minimized. Gustav-Adolf Voss, builder of PETRA, 5. October 2013 ist km zu groβ?

15 energy = 91, 160, 240, 350 & 500 GeV c.m. circumference ~100 km total SR power 100 MW #IPs = 2 or 4 beam-beam tune shift / IP scaled from LEP luminosity / IP ~ 5x10 34 cm -2 s -1 at the Higgs ~1000 x LEP2 top-up injection y * = 1 mm ~ z TLEP (e + e - ) Hauptparameter

16 * - historischer Trend year * [m] PETRA SPEAR PEP, BEPC, LEP CESR DORIS TRISTAN DAFNE CESR-c, PEP-II KEKB BEPC-II SuperKEKB TLEP IP beam size

17 beam commissioning will start in early 2015 y *=300 m (TLEP: 1 mm) lifetime 5 min (TLEP: ~15min) y / x =0.25% ! (TLEP: 0.2%) off momentum acceptance (±1.5%, TLEP: ±2%) e + production rate (2.5x10 12 /s, TLEP: <1x10 11 /s) SuperKEKB wird TLEP Machbarkeit zeigen

18 S. Henderson TLEP-Z TLEP-W TLEP-H TLEP-t Luminosität von e + e - colliders

19 ultimate precision at Z, WW, ZH ; sensitive to New Physics in multi-TeV range & to SM closure case for VHE-LHC ultimate energy reach up to 1 or 3 TeV ; direct searches for New Physics Luminosität von e + e - Higgs-Fabriken

20 TLEP Herausforderungen short beam lifetime from Bhabha scattering lifetime limit from beamstrahlung highly efficient SRF system (+ cheap magnets) synchrotron radiation quasi continuous top up injection flat beams (small vertical emittance) final focus with large E acceptance >50% wall plug to beam power per meter & critical energy more benign than for other rings

21 A. Blondel hohe Luminosität booster ring for top up injection into collider

22 Teilchenphysik bei TLEP? and much more John Ellis Kings College London

23 1 M Higgs produced so far – more to come! 15 H bosons / min – and more to come 10x more Higgs 42x higher cross section for H self coupling pp Higgs-Fabriken

24 Fresca2 McIntyre VHE-LHC höheres Feld Technologiewechsel E. Todesco, L. Rossi

25 wo stehen wir mit Nb 3 Sn? E. Todesco, L. Bottura Nb 3 Sn performance has greatly improved (doubled in ten years)

26 E. Todesco, L. Rossi, P. McIntyre 20-T dipole 15-T dipole beam pipe beam pipe kostenoptimierte Magnete 15 T dipoles km circumference 100 TeV pp 20 T dipoles + 80 km circumference 100 TeV pp

27 Main Parameters for FHC (VHE-LHC) energy = 100 TeV c.m. dipole field = 15 T (baseline) [20 T option] circumference ~100 km #IPs = 4 total beam-beam tune shift = 0.01 bunch spacing = 25 ns [5 ns option] peak luminosity = cm -2 s -1 * ~ 1.1 m [2 m conservative option] linked to total beam current (~0.1 A) VHE-LHC/FHC (pp) Hauptparameter

28 VHE-LHC/FHC Herausforderungen synchrotron radiation heat load synchrotron radiation damping luminosity limits (radiation damage, pile up) machine protection warm photon absorbers? controlled blow up? shorter bunch spacing? crab wait collisions? many more magnet sectors?

29 Teilchenphysik am VHE-LHC/FHC? Nima Arkani-Hamed Institute for Advanced Study in Princeton

30 PSB PS (0.6 km) SPS (6.9 km) LHC (26.7 km) TLEP ( km, e + e -, up to ~350 GeV c.m.) VHE-LHC/FHC (pp, up to 100 TeV c.m.) & e ± (120 GeV) – p (7, 16 & 50 TeV) collisions ([(V)HE-]TLHeC) 50 years of e + e -, pp, ep/A physics at highest energies LHeC & SAPPHiRE? mögliche Langzeitstrategie

31 LHC Constr. Physics Proto. Design, R&D HL-LHC Constr. Physics Design, R&D VHE-LHC Constr. Design, R&D 2040 TLEP Constr. Physics Design, R&D Physics LHeC/SAPPHiRE? Constr. Physics Design, R&D Skizze der Zeitskala

32 RECFA - Budapest– 5 th October 2013 Infrastructure tunnels, surface buildings, transport (access roads), civil engineering, cooling ventilation, electricity, cryogenics, communication & IT, fabrication and installation processes, maintenance, environmental impact and monitoring, safety Hadron collider Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs HE-LHC comparison Operation concept Detector concept Physics requirements Hadron injectors Beam optics and dynamics Functional specs Performance specs Critical technical systems Operation concept e+ e- collider Optics and beam dynamics Functional specifications Performance specs Critical technical systems Related R+D programs Injector (Booster) Operation concept Detector concept Physics requirements e- p option: Physics, Integration, additional requirements Future Circular Colliders (FCC) - Conceptual Design Study & Cost Review for next European Strategy Update FCC Studie - Umfang & Struktur two pillars: pp & e + e - ; emphasis on pp machine, driving infrastructure

33 Infrastructure, cost estimates P. Lebrun VL Hadron collider D. Schulte Hadron injectors B. Goddard e- p option Integration aspects O. Brüning Future Circular Colliders - Conceptual Design Study Study coordination, host state relations, global cost estimate M. Benedikt, F. Zimmermann e+ e- collider J. Wenninger High Field Magnets L. Bottura Supercon- ducting RF E. Jensen Cryogenics L. Tavian Specific Technologies (MP, Coll, Vac, BI, BT, PO) JM. Jimenez Physics and experiments Hadron physic Experiments, infrastructure A. Ball, F. Gianotti, M. Mangano e+ e- exper., physics A. Blondel J.Ellis, P.Janot e- p physics + M. Klein Operation aspects, energy efficiency, OP & mainten., safety, environment. P. Collier Planning (Implementation roadmap, financial planning, reporting) F. Sonnemann German speakers Team zur Kickoff- u. Studienvorbereitung

34 U. Geneva February 2014! FCC kick-off meeting

35 Wir hoffen auf rege Mitarbeit! Vielen Dank!

36 back-up slides

37 ~600 pages LHeC CDR published in J. Phys. G: Nucl. Part. Phys (2012) LHeC Conceptual Design Report 2012

38 L-R LHeC road map to cm -2 s -1 luminosity of LR collider: highest proton beam brightness permitted (ultimate LHC values) =3.75 m N b =1.7x10 11 bunch spacing 25 or 50 ns smallest conceivable proton * function: - reduced l* (23 m 10 m) - squeeze only one p beam - new magnet technology Nb 3 Sn * p =0.1 m maximize geometric overlap factor - head-on collision - small e- emittance c =0 H hg 0.9 (round beams) average e - current limited by energy recovery efficiency I e =6.4 mA H D ~1.3 D. Schulte LHeC2010

39 LHeC baseline & Higgs factory parameters L ep ~ cm -2 s -1

40 5 MeV Injector Dump 5 MeV Injector Dump 5 MeV Injector Dump various stages A. Valloni, O. Brüning, E. Jensen, M. Klein design under study LHeC SRF & ERL test facility

41 Higgs factory performances Precision on couplings, cross sections, mass, width, Summary of the ICFA HF2012 workshop (FNAL, Nov. 2012) arxiv1302:3318 Circular Higgs Factory really goes to precision at few permil level.

42 CERN Courier article, 19 July 2013 John Ellis

43 RECFA - Budapest– 5 th October 2013 Michael Benedikt Leader Frank Zimmermann Deputy Leader F. Bordry Leiter der FCC Designstudie

44 eine LHC Entdeckung

Download ppt "Zukünftige Beschleunigerprojekte am CERN Frank Zimmermann Jahresversammlung des Kommittees für Beschleunigerphysik Darmstadt, 29 November 2013 Thanks to."

Similar presentations

Ads by Google