Presentation is loading. Please wait.

Presentation is loading. Please wait.

AUKSOSTAAT-AKSELEROSTAAT-TEHNOLOOGIA

Similar presentations


Presentation on theme: "AUKSOSTAAT-AKSELEROSTAAT-TEHNOLOOGIA"— Presentation transcript:

1 AUKSOSTAAT-AKSELEROSTAAT-TEHNOLOOGIA
Klassikalised fermentatsiooniprotsessid toidutööstuses on perioodilised. Pidevprotsesside rakendamine on olnud seni väheedukas, kuna need ei taganud vajalikku kvaliteeti ja olid saastumistundlikud. Auksostaattehnoloogia võimaldab aga protsesside mikrobioloogilise saastuse probleemid edukalt lahendada, paranda toidu kvaliteeti, luua uusi tooteid ja optimeerida protsesse

2 Akselerostaat-tehnoloogia laboratoorsed rakendused
Tööstuslike protsesside optimeerimine Mikroobide iseloomustamine Söötmete väljatöötamine Mikroobifüsioloogia uurimine Mikroobide selektsioon Metaboolika

3 Cultivation methods Batch Chemostat Turbidostat/auxostat Fed-batch
Accelerostat (A-stat) D-stat Turbidostat/auxostat Auxo-accelerostat Fed-batch m-stat (substrate limited fed-batch) The classical cultivation techniques Batch, chemostat, turbidostat and Fed-batch Have been known already for long time And during past 50 years Only little attention has been payd to develop The new, more efficient techniques Are the old methods already so perfect

4 Fed-batch ehk juurdevoolukultuur
Kasvatamismeetodid Fed-batch ehk juurdevoolukultuur Si Läbivoolukultuur sööde raku-kultuur rakud Batch

5 Batch culture lnX YXS=dX/dS tana=m=dX/dt/X
Is very convinient for determination of the maximum specific growth rate Using semilogarithmic plot the maximum for current environmental conditions growth is equal to slope tanA It is not always that simple, in many cases the organsims will have not long enough the phase of exponentioal Or balanced growth. tana=m=dX/dt/X TIME (h)

6 Batch culture of S. cerevisiae, pH=3.6; T=30oC
In case of Saccharomyces cerevisisae, constant equal to maximum growth can be observed during few generations, at higher biomass concentations the growth rate starts to decrease.

7 Läbivoolukultuur Kontrollitakse lahjenduskiirust (D)
Kemostaat, hoitakse D-d ja keskkonna tingimusi konstantsena A-staat, muudetakse lahjenduskiirust sujuvalt D-staat, muudetakse keskkonna tingimusi sujuvalt Kontrollitakse biomassi kontsentratsiooni Turbidostaat (kostantne hägusus) pH-auksostaat (konstantne pH) CO2-auksostaat pO2-auksostaat Kui kasutatakse sujuvat kasvutingimuste muutmisest nimetatakse meetodit aukso-akselerostaadiks

8 Chemostat The most precise method of culture characterization
The steady-state can be obtained keeping D and T, , air, SFEED etc. constant D=feeding rate/culture volume (1/h) The culture characteristics m=D; YXS= (SFEED - S)/X Chemostat is considered to be the most precise method of culture characterisation KING of the cultivation methods Because the culture characteristics can be vey simply And precisely measured Often all you need to know is feeding rate, culture volume and limiting substrate concentration in the feeding

9 Steady-state the culture conditions in which X, Si, Pi, YXS, pH, pO2, T, V, biomass composition etc. are constant the biomass concentration, not changing in time span of observation shows, usually that steady-state is achieved in chemostat . Keeping dilution rate constant steady state will be obtained in the chemostat To prove that steady-state is obtained, it is usually sufficient that biomass concentration remains constant during time span of the observation.

10 Chemostat culture of E. coli glucose (10 g L-1), T=30 oC, pH=6.6
1.0 2.0 3.0 4.0 5.0 X g/l glc ace 0.10 0.20 0.30 0.40 0.50 1/h Dilution rate D = m All the points in this curve are the steady-state point, which steady-state was ensured passing 3-5 culture volumes throug the fermentor. The maximum specific growth rate, equal to dilution rate in chemostat was h-1 At higher dilution rates the wash-out of the culture was observed. mmax=0.39 h-1

11 The reasons for development of accelerostat
Significantly slower growth rate in chemostat than in batch culture Long time and big amounts of media are required to obtain the chemostat curves Oscillations after the step-wize change of D can occure in chemostat Development of computer controlled cultivation systems Thats not all, shift up of the dilution rate can Cause oscillations in case of yeast culture

12 Oscillations of S. cerevisiae at D=0.1 h-1
All culture parameter including CO2 production rate Oxygen consumption rate Titrant consumption rate As well as Optical tensity oscillate in Time span of observation.

13 Smooth change of D instead of step-wise
To prevent the negative effects descibed before We Used the step-wize shange instead of step-wize After obtaining stedy state in chemostat, we started to increase the dilution rate smootly at constant acceleration rate In result the time and media consumption of the experiment decreased at least two-fold and

14 A-stat cultivation of E. coli
The wash-out of the culture at much higher dilution rate than in chemostat was obtained. Due to the dilution rate was increased smootly at constant acceleration rate a The culture behaviour demonstrated that at certain dilution rate the capacity of respiratory chain in E. coli becomse exhausted and overflow metabolites like acetate start to accumulate. Also maximum specific growth rate 0.59 h-1 was calculated..

15 Calculation of culture characteristics in A-stat
In calculations of specific growth rate beside dilution rate also change of biomass concentration should be taken into account.

16 FermExpert  BioXpert First Microsoft Windows based cultivation soft-ware for fermentation control (1992) The program enabled to program the behavior of cultivation parameters and on-line calculation of the culture parameters using differential equations Possibility to change the dilution rate smoothly. To carry out the A-stat or accelerostat experiments conviniently we developed the software FermExpert Which was the first Microsoft windows based cultivation control software in the word And is sold until now by Applikon.

17 A-stat cultivation of Saccharomyces cerevisiae
Hier one more accelrostat experiment with Saccharomyces cerevisiae. In RED the behaviour of growth rate is shown. The growth rate remains lower than dilution rate, however the maximum growth rate 0.45 h-1, the same that in batch was observed

18 Chemostat based methods
Accelerostat (A-stat) D-stat (a=0) T, Si, pH, pO2 Fed-batch with changing culture volume (quasi-steady-state culture) There are some more chemostat based methods we developed, the D-stat in which dilution rate is kept constant And one of the environmental or cultivation parameters is changed smoothly

19 D-stat with increase of temperature
Hier you see one experiments represented yesterday on the poster session The dilution rate was kept constant and Temperature was increased at constant rate In result the intracellular threhalose concentration increased and then at 42 oC started to decrease, In the same time the specific growth rate obtained a zero value.

20 D-stat with increase of temperature
Also the accumulation of acetate started at that temperature

21 D-stat with changing culture volume
D-stat can be carried out using changing culture volume. Those results were presented yesterday on poster session by dr Monika Drews Keeping dilution rate constant in fed-batch culture you can save lot of culture media to achieve the steady state culture Later, you can take out big omounts of culture media for you experiments without disturbing steady state.

22 Effect of growth rate on
Sorry for long introduction, however it is time now to go to the auxostat. At near maximum growth rates in chemostat small change in m=D caused the big change in biomass concentration, pH, CO2 production etc. Thefore it is impossible to keep the culture in this range using chemostat based methods Biomass can be however to be kept constant using the feed-back loops of biomass control.

23 Auxostat (turbidostat)
The biomass concentration can be kept constant by feed-back control of Optical density OD pH Dissolved oxygen concentration pO2 Oxygen concentration in exhaust gas O2 CO2 concentration in exhaust gas etc. by dilution rate D. For steady-state culture there may be no difference as set-point can be adjusted to desired biomass concentration X The methods in which biomass concentration is kept constant be feedback control of dilution rate are called auxostat methods. For feed-back contro any parameter which is proportional to biomass concentration can be used.

24 Feed-back control in auxostat
PUMP1 PUMP2 IF Z>Zs THEN PUMP1=HIGH ELSE PUMP1=LOW IF V>Vset THEN PUMP2=ON ELSE PUMP2=OUT X, pH, pO2 V Auxostat needs to pumps to be controlled First is used to keep the control parameter Z constant The second one is for culture volume (NB you cannot to collect the culture from surface, it affects the results!!) For example if the biomass concentration is higher than desired the pump A is swithced on at high speed And if it lower than desired value it will be switched on at low speed. Chemostat PUMP1 = constant

25 Obtaining steady-state in pH-auxostat
5 10 15 20 25 pmp 30 40 50 60 70 T 0.15 0.30 0.45 0.60 0.75 D 1/h 4 8 12 16 hours time Instead of biomass concentration (turbitity) pH can used as well as control parameter. To obtain the new steady-stat charactarised in case of auxostat with constant dilution rate in time span of observation Up to 10 culture volumes may be required to pass through culture medium

26 Experimental strategy of auxo-accelerostat
The steady-state is obtained by keeping cultivation conditions Y {Tset, pHset, Vset, feeding medium composition etc.} controlling biomass concentration X = g * Z at desired level One of the culture parameters (T, S, I etc.) is changed at constant rate To study the effect of environmental conditions on culture characteristics in auxostat the environmental conditions are usually changed step-wise. We like in case of accelerostat used the smooth, gradual change instead and called the method AUXOACCELEROSTAT

27 pH-auxo-accelerostat of S
pH-auxo-accelerostat of S. cerevisiae with increase of biomass concentration In this slaid a pH-auxoaccelerostat experiment is presented in which we increased the biomass concentrartion by increasing the pH of the feeding medium smoothly. The experiment demonstrated that different physiological states of the culture can correspond to the same growth rate and even biomass concentration in axostat culture, The behaviour of YXS and QATP suggest that at maximum growth rate the growth of yeast cells is limited by anabolic (biosynthetic capacity) not by capacity of ATP production. With increase of biomass concentration over 0.7 g l-1 the growth rate decreases

28 Batch culture of S. cerevisiae
The same was observed also in batch culture of Saccaromyces cerevisisae. The cross of YATP and QATP was however not observed, like in parallel auxoaccelerostat experiment with longer stabilisation time

29 Effect of biomass concentration
Usually no direct effect Indirect effect Growth promoting compounds Growth inhibiting compounds Primary metabolites Secondary metabolites Toxins So for auxoaccelrostat experimets the biomass concentration should be carefully chosen and kept in neutral range not affecting the culture characteristics.

30 Auxostat methods Turbidostat pH-auxostat pO2-auxostat CO2-auxostat
T-auxostat Ethanol-auxostat We used different auxo-accelerostat methods

31 pH-auxoaccelerostat Advantages Disadvantages
Very sensitive to change of biomass concentration, Well proportional to biomass concentration Technically simple and reliable Disadvantages Affected by change of pH in the feeding Complicated in studies of pH effect pH is very sensitive to …

32 Strain characterization
Determination of culture characteristics of different LAB in pH-auxo-accelerostat We used the pH auxostat for characterisation of technological properties of lactic acid bacteria and Saccharomyces cerevisisae. Result show that the technological parameters of different species of LAB are very different

33 Determinations of growth characteristics of Saccharomyces cerevisiae
Effect of biomass Effect of ethanol Effect of propanol Effect of temperature Effect of oxygen Effect of yeast extract Effect of pH Effect of salt In case of Saccharomyces cerevisisae we studied …

34 pH-auxoaccelerostat, ethanol
You see the yeast has optimal in respect of growth rate concentration of ethanol (about 1%)

35 pH-auxo-accelerostat, NaCl
The NaCl concentration up to 10 g l-1 do not affect the growth reate

36 pH-auxoaccelerostat, pH
The pH down to 2.8 does not ffect the growth rate

37 pH-auxoaccelerostat, T
The growth rate optimum of Saccharomyces cerevisiae is at 37oC However YATP decreases with increase of temperature

38 pH-auxosccelerostat, yeast extract, T=37oC
Adding yeast extract maximum growth rate of 0.69 h-1can optained at optimal temperature T=37 oC

39 pH-auxoaccelerostat, pO2
At pO2 concentration lower than 0.4 % of air saturaation the growth rate and YATP of yeast starts to decrease.

40 CO2-auxo-accelerostat
CO2 concentration is proportional to X and growth rate Advantages Not affected by pH of the feeding medium Good sensitivity and precision Disadvantages Solubility of CO2 affects the concentration Delay in measurements Significant change in biomass concentration complicates interpretation of results In some cases if the change of pH is very small Like in the cultures of insect cells the or If effect weak acids is studied the pH-auxo-accelrostat can not be conviniently used.

41 CO2-auxo-accelerostat
In CO2 auxoaccelerostat experiment with smooth increase of pentanoic acid concentration the grwoth rate starts to decrease almost imminiently after pentanoic acid is added

42 pO2-auxostat Allows to keep biomass concentration at desired level determined by the stirrer speed, aeration rate etc. Difficult to use in case of low oxygen consumption PH auxostat in turn ….

43 pO2-auxo-accelerostat
This is an example in which tryptone concentration in the feeding was increased

44 T-auxostat Very perspective in industrial scale
Heat production is proportional to biomass production Both T of the fermentation medium and DT of cooling water can be used as set-point

45 Auxostat with change of culture volume
Biomass with maximum activity is required repeatedly for carrying out Infection experiments Physiologic studies Food fermentations To obtain the steady-state culture using minimum amount of culture media To derive biomass with maximum biosynthetic activity …

46 CO2-auxostat with volume change
Using CO2 auxostat is that after decreasing the culture volume the release of specific CO2 realeas incrreases at expence of accumulatd in the culture media CO2.

47 Determination of growth rate in auxo-accelerostat
vIN vOUT VFEED VOUT,X Z L Balance V, X, pH, pO2 Stirrer control Determination of growth rate in axo-accelerostat has many sources of errors The dilution rate fluctuates in accordience of contro parameter control If the biomass concentration changes, it also increases error of measurements. Dilution rate m = (dVOUT/dt + dV/dt)/V + d(X*V)/dt)/(X*V)

48 Application of the new methods in food technology
Auxostat – can be used to improve the performance of food fermentation processes D-stat and accelerostat – optimization on fermentation conditions for biomass production Auxo-accelerostat – culture characterization

49 Principle possibilities of application of auxostat in food fermentations
Two tank processes Continuous auxostat culture Batch maturation One tank processes Auxostat with changing culture volume (tank filling)

50 Two tank auxostat process
pH, pO2, T, V, str Si, Pi Värske toore KONT- ROLLER pump BIOXPERT pump=low pH Järel-valmimine pump=high ARVUTI pHSET

51 One tank auxostat process
Toore juuretis pH

52 Applications of auxostat technology
Piiritusetööstus Piimatööstus Hapendatud piimatooted Jogurt Kohupiim, juust Toiduäädikas Õlletööstus

53 Piirituse pidevtootmine
MOE piiritusetehases on seadistatud momendil mitmeastmeline kemostaattehnolooia, mis on väga tundlik protsessi saastumisele võõrmikroflooraga. Auksostaat tehnoloogia võimaldab alandada kultiveerimise pH-d väärtuste 3-3,6 juurde, mille juures kasvul maksimaalse kiiruse 0,3-0,4 h-1 juures on praktiliselt võõrmikrofloora ülekasv välistatud ja tootlikus võrreldes kemostaadiga on fermentatsiooni esimeses astmes 4 kordne.

54 topsi-jogurti pidevtootmine
pH-auksostaadis (pHset=5.8) on võimalik hoida jogurtibakterite Streptococcus thermophilicuse ja Lactobacillus bulgaricuse kooslust kasvukiiruse 1 h-1 juures Villides selle kultuuri topsidesse valmib topsijogurt.

55 orgaaniliste hapete tootmine
Auxostat-tehnoloogia on sobilik veiniäädika tootmiseks Suure puhtusastmega orgaaniliste hapete stereoisomeeride tootmisel, näiteks piimhappe bakterite abil

56 Vadaku vääristamine Hapustamine pH-auksostaadis
Kontsentreerimine pöördosmoosil Kontsentraadi (laktaatsiirupi) kasutamine pärmi substraadina või piimhappe tootmiseks

57 Juuretised Auksostaat-tehnoloogia võimaldab saada pidevalt optimaalsete füsioloogiliste omadustega juuretisi Vähendab starterjuuretise kulu Lülitada tootesse optimaalses füsioloogilises seisundis probiootilisi juuretisi Probiootiliste jookide automaadid.

58 Naturaalkalja tehnoloogia
Piimhappe bakterid + pärm kooskasvatamine kalja ekstraktil auksostaadis Mikrofiltratsioon Villimine pudelisse + mikroobid kaasa

59 Toksilisuse pidev monitooring
Biopuhastusseadmete korral on väga oluline vältida reaktori toksilist šokki. Kuna auksostaat reageerib momentaalselt toksilisuse kasvule on võimalik meetodi abil monitorida heitvete toksilisust ja võtta selle alusel kasutusele asjakohaseid meetmeid

60 Rekombinantide tootmine
Maksimaalse kasvukiirusega kasvavad rakud on kõige paremini infekteeritavad viiruste ja faagide poolt Rekombinantide tootmine bakuloviirussüsteemis

61 Kokkuvõte Akselerostaattehnoloogia on efektiivne uudsete toidu- ja biotehnoloogiliste protsesside disaini meetod Auxostaattehnoloogia on perspektiivne fermentatsiooni meetod toiduainete tehnoloogias Vähendab juuretiste kulu Võimaldab paremini kontrollida protsesse Võimaldab luua põhimõtteliselt uusi tooteid

62 Auksostaatprotsessid tagavad
suure tootlikkuse Toidukvaliteedi, kuna toimub täpselt defineeritud tingimustes Toiduohutuse, kuna fermentatsiooni tingimused on kogu kasvu vältel on mittesobivad patogeensete mikroorganismide kasvuks


Download ppt "AUKSOSTAAT-AKSELEROSTAAT-TEHNOLOOGIA"

Similar presentations


Ads by Google