Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Model Checking of Robotic Control Systems Presenting: Sebastian Scherer Authors: Sebastian Scherer, Flavio Lerda, and Edmund M. Clarke.

Similar presentations


Presentation on theme: "1 Model Checking of Robotic Control Systems Presenting: Sebastian Scherer Authors: Sebastian Scherer, Flavio Lerda, and Edmund M. Clarke."— Presentation transcript:

1 1 Model Checking of Robotic Control Systems Presenting: Sebastian Scherer Authors: Sebastian Scherer, Flavio Lerda, and Edmund M. Clarke

2 2 Outline ● Motivation – Why verification – Scope – Control software ● Method ● Case Study ● Conclusions

3 3 Why verify robot software? ● Failure is expensive: – Interplanetary exploration – Crash / Rollover ● Autonomy increases responsibility: – Human interaction – Large forces and momenta

4 4 The scope of our approach Start by verifying this part. Typical mobile robot architecture Environment Actuators Sensors PreprocessingController AccumulationPlanning Goal Software Hardware Specified

5 5 Control systems are implemented in software ● Main loop is only a small fraction of the control software: – Initialization – Exception handling – Conversion ● Fatal bugs can be in any line of the code. Typical mobile robot architecture Environment Actuators Sensors PreprocessingController AccumulationPlanning Goal Software Hardware Specified

6 6 Outline ● Motivation ● Method – Capabilities & Limitations – Method – Model Checking ● Case Study ● Conclusions import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); + Code of controller + environment(plant)

7 7 Capabilities of our method ● Utilizes environment (plant) of the control system. ● Simulates behaviour: – Determines stability. – Models influence of noise. – Checks performance specifications. – Computes ranges of trajectories. ● Checks programming errors: – Null pointer exceptions. – Dead lock, concurrency bugs. – Errors affecting the behavior. ● Code checked is identical to executed code.

8 8 Limitations of our method ● Discrete method: – Makes assertions only about a particular initial condition. – Continuous states are approximated up to a fixed point precision. – Precision often determines the length of a simulation trace and the size of the state space to explore. – Noise is approximated by a discrete set of values. ● Detailed model: – Requires model relating inputs and outputs. – Additional memory and computation time. ● Assumptions: – Time elapses only while tasks sleep. – Unbounded variables like time and distance must be abstracted manually.

9 9 Model check software with a physical environment import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); + Code of controller + environment(plant) import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Source code of controller Abstract controller Source code including the environment Verify actual source code

10 10 Method import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Actual Robot Sensors Actuators Software executed on robot Environment model ● Execute the source code. ● After all tasks sleep execute the environment. ● Equivalent states are not revisited.

11 11 Method import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Actual Robot Software executed on robot Environment model ● Software executes until all tasks yield.

12 12 Method import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Actual Robot Software executed on robot Environment model ● Software executes until all tasks yield. ● Commands are set. Sensors are read. Time elapses

13 13 Method import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Actual Robot Software executed on robot Environment model ● Software executes until all tasks yield. ● Commands are set. Sensors are read. Time elapses ● Software executes with new sensor values.

14 14 Method import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); Actual Robot Software executed on robot Environment model ● Software executes until all tasks yield. ● Commands are set. Sensors are read. Time elapses. ● Software executes with new sensor values. ● Commands are set. Sensors are read. Time elapses with new commands.

15 15 Model checking ● Model consists of states and transitions. ● Java byte code specifies a model. ● Verify a model against a specification given as logic properties. ● The algorithm visits all states of the model to verify that none of the specified properties are violated. ● If the same state is reached twice backtrack. import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = Gate.getInstance(); SpeedOMeter encoder = SpeedOMeter.getInstance(); LightArray lightsensor = LightArray.getInstance(); TLC2543 tlc = TLC2543.getInstance(); * if(Environment.isMC) { lightsensor.initDefault(); SpeedControl speedcontrol = SpeedControl.getInstance(); SteeringControl steeringcontrol = SteeringControl.getInstance(); Environment env = Environment.getInstance(); States Transitions

16 16 Java PathFinder ● All states are explored to find a violation of the properties. ● Executing the byte code generates successors. ● If no new successors are generated the search backtracks. ● Environment byte code is executed on host JVM. No intermediate states are generated from it. ● Environment stores only necessary state variables. Robot source code Host JVM running Java PathFinder Java Virtual Machine of Model Checker Environment

17 17 Outline ● Motivation ● Method ● Case Study – Architecture – Verification – Model – Results ● Conclusions

18 18 Overview Robot has to follow a line and maintain a constant speed. Native Java microcontroller executes the code. Check source code without change.

19 19 Architecture ● Actuators – Steering – Motors ● Sensors – Light sensors – Encoder

20 20 Software ● 3 tasks running with a fixed frequency of 33Hz. ● Task 1: Reads sensor values. ● Task 2: Controls the steering. ● Task 3: Controls the velocity. ● A fixed rate scheduler determines the execution order and duration. Task 1Task 2 Task 3

21 21 Verification ● Need model of the environment. ● Need definition of states. ● Verify robot starting from initial condition offset from center of line and on a straight line.

22 22 Environment model ● Two models necessary ● Model relate commands to sensor information ● Sensed position over line depends on – Steering command – Velocity command ● Sensed encoder velocity depends on the velocity command. Sensed position model Sensed velocity model Input: Velocity command Output: Encoder velocity Inputs: Velocity command Steering command Output: Encoder velocity

23 23 Determining the model One way to obtain a model of the environment is system identification. Performed experiments and obtained a second- order model for velocity and a fourth-order model for steering Quality of sensor gave a better fit for the velocity

24 24 States ● Continuous state: – 6 state variables – 2 inputs ● States are discretized up to a fixed precision to terminate on stability and disambiguate quasi-equal states. ● Monotonic variables such as time or distance are (manually) abstracted. ● DESCRIBE PICTURE import gov.nasa.jpf.jvm.Verify; import com.ajile.jem.PeriodicThread; import com.ajile.jem.PianoRoll; import com.ajile.drivers.gptc.*; import intermediate.*; import drivers.*; import controller.*; import model.*; public class Mobot { static final int PR_DURATION_MSEC = 80; static final int PR_BEAT_MSEC = 1; static PianoRoll Piano_Roll = new PianoRoll (PR_DURATION_MSEC, PR_BEAT_MSEC); public static void main(String[] args) { DecsionPoints.runSys=true; //Initialize threads PWM2 pwm = PWM2.getInstance(); Gate gate = + State space model Discrete StateContinuous State

25 25 Non-Determinism ● Possible to explore non- determinism in the software and environment. ● Model checking explores a wider spread of trajectories. ● Non-determinism is discrete. Differential equations are deterministic. Blue region is the spread of trajectories covered by the model checker. Red trajectory shows an actual trace of the robot.

26 26 Results ● Added different kinds of non-determinism to model. – Encoder reading off by - 10, 0, +10 ticks – Failure of one sensor in the array of light sensors – Commanded steering and velocity pulsewidth is not accurate. Ground Wh eel Slip

27 27 Results ● We verified a set of properties of the control software. ● No programming errors (e.g. Null pointer exceptions) were found.

28 28 Outline ● Motivation ● Method ● Case Study ● Conclusions

29 29 Conclusion ● Model checker covers a sufficient range of trajectories to simulate all inputs to program. ● Seeded type conversion bug was found. ● Verifies software for robot controllers directly. ● Discretization, abstraction and extraction of continuous states enable efficient verification. ● Exhaustive exploration of non-determinism such as random sensor failure. ● Aids the control system designer by direct verification of all reachable states of the model.

30 30 Future work ● Prove correctness of model checking algorithm ● Extend notion of discretization of state space to be an over-approximation. ● Provide integrated support for modeling the environment ● Integrate with higher level software interfaces ● Check complex systems ● Extend to languages other than Java

31 31 Questions? Comments? Contact Information: Sebastian Scherer basti@andrew.cmu.edu http://www.cs.cmu.edu/~basti/


Download ppt "1 Model Checking of Robotic Control Systems Presenting: Sebastian Scherer Authors: Sebastian Scherer, Flavio Lerda, and Edmund M. Clarke."

Similar presentations


Ads by Google