Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kenneth Wood St Andrews

Similar presentations


Presentation on theme: "Kenneth Wood St Andrews"— Presentation transcript:

1 Kenneth Wood St Andrews
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions, Structure and Warping Kenneth Wood St Andrews

2 Radiation Transfer + Hydrodynamics
RT Models: Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan Dust Theory: Mike Wolff SPH Models: Ken Rice, Mike Truss, Ian Bonnell Observations: Charlie Lada, Ed Churchwell, Glenn Schneider, Angela Cotera, Keivan Stassun

3 Monte Carlo Development History
Scattered light disks & envelopes (1992) 3D geometry & illumination (1996) Dust radiative equilibrium (2001) Monte Carlo for disk surface diffusion for interior (2002) Density grids from SPH simulations (2002) Spatial variation of dust opacity (2003) Self consistent vertical hydrostatic equilibrium (2003) 1992: Predictions 1996: HST data GM Aur: 4AU gap, disk-planet interaction

4 Disk Structure Calculations
Above used parameterized disks: power laws for S(r), h(r) Disk theory: reduce model parameter space Irradiated accretion disks: S ~ r -1, h ~ r (D’Alessio, Calvet, & collaborators) New Monte Carlo: iterate for disk structure (Walker et al. 2004) Model disks around GM Aur and AA Tau

5 Disk-Planet Interactions: Gap Clearing
Simulation from Ken Rice & Phil Armitage Papaloizou, Lin, Bodenheimer, Lubow, Artymowicz, Nelson, D’Angelo, Kley, … Observational signatures: images, SEDs?

6 Protoplanetary Disks Need high resolution imaging: ALMA
Gap clearing simulation images: 700mm 700mm ALMA simulation Wolf et al. 2002

7 Inner Gaps from SED Modeling
Remove inner disk material: remove near-IR excess emission Rin = 7R* Rin = 4 AU GM Aur

8 GM Aur: Disk/Planet Interaction?
Schneider et al. 2003 NICMOS coronagraph Scattered light modeling: Mdisk ~ 0.04 M8; Rdisk ~ 300 AU; i ~ 50

9 GM Aur: Disk/Planet Interaction?
No near-IR excess SED model requires 4AU gap: planet?

10 GM Aur: Disk/Planet Interaction?
Rice et al. 2003 3D SPH calculation from Ken Rice Planet at 2.5AU clears inner 4AU in ~2000 yr

11 GM Aur: Disk/Planet Interaction?
Rice et al. 2003 3D SPH calculation from Ken Rice Planet at 2.5AU clears inner 4AU in ~2000 yr

12 GM Aur: Disk/Planet Interaction?
Mp = 2MJ Mp = 50MJ Rice et al. 2003 Spitzer SED can discriminate planet mass Centroid shifting ~ 0.1mas: Keck, SIM?

13 GM Aur: Disk/Planet Interaction?
TW Hya Rice et al. 2003 Calvet et al. 2002 Spitzer SED can discriminate planet mass Centroid shifting ~ 0.1mas: Keck, SIM?

14 AA Tau: Large and Small Scale Disk Structure
Photopolarimetry (Bouvier, Menard, et al.) P ~ 8.4 days, DV ~ 1 mag, D(B-V) ~ 0 Star eclipsed by warp in inner disk SED model to get disk structure Warped disk model for photopolarimetry SPH: tilted dipole warps disk

15 AA Tau SED Modeling T = 4000 K, R = 2R8, M = 0.5M8
M = 2e-9 M8/yr, Rd = 200 AU, i = 70 O’Sullivan et al. (2004)

16 Analytic Disk Warp AA Tau: P ~ 8.4 days
Warp at r ~ 0.07 AU, amplitude ~ 0.02 AU O’Sullivan et al. (2004)

17 Photopolarimetry Simulation
DV DV ~ 1 mag DP ~ 0.3% P (%) PA O’Sullivan et al. (2004)

18 SPH Simulation Inclined dipole field: include magnetic force in SPH code (NOT MHD!) Need B = 2 kG, at latitude q = 65 (see also Terquem & Papaloizou)

19 Summary & Future Research
Monte Carlo: self-consistent disk structure calculations GM Aur: Disk-planet interaction, need Spitzer SEDs AA Tau: SED model for disk structure Warped disk for photopolarimetry SPH: dipole B = 2 kG, at latitude q = 65 Coding: Radiation pressure Include gas opacity Transiently heated grains Goal: merge radiation transfer & hydro Codes now available at:

20 Disk Dust: Grain Growth
ISM Disk dust Dust Size Distribution: Power law + exponential decay Grain Sizes in excess of 50mm Grayer opacity, Sub-mm slope ~ 1/l Fits HH30, GM Aur, AA Tau Beckwith & Sargent (1991): sub-mm continuum SEDs: k ~ 1/l

21 Estimating Rin from SEDs
6 AU 20 AU 300 AU T r1/5 GM Aur Hot inner edge emits in IR Include inner edge emission when estimating Rin

22 Vertical Hydrostatic Equilibrium
GM Aur Monte Carlo, Rin = 4 AU, i = CG97, Rin = 0.1 AU CG97, Rin = 4 AU

23 Estimating Rin from SEDs
Monte Carlo CG97 KH87 ALS87 MC models include inner edge emission Other models without inner edge emission No 10mm excess MC: Rin > 10 AU CG: Rin ~ 2.5 AU

24 Disk Structure Walker et al. (2004)

25 SEDs D’Alessio: i = 60 MC: i = 63 MC: i= 60 Walker et al. (2004)

26 Comparison Summary MC: Disk slightly hotter at large radii Slightly more emission in mm Differences: Radiation pressure Dust opacity Treatment of upper layers Non-isotropic scattering Radial transport in outer disk


Download ppt "Kenneth Wood St Andrews"

Similar presentations


Ads by Google