Presentation is loading. Please wait.

Presentation is loading. Please wait.

Advisor: Prof. Yen-Kuang Kuo

Similar presentations


Presentation on theme: "Advisor: Prof. Yen-Kuang Kuo"— Presentation transcript:

1 Advisor: Prof. Yen-Kuang Kuo
Advantages of Blue InGaN Light-Emitting Diodes with Slightly-Doped Step-Like Electron-Blocking Layer Tsun-Hsin Wang Ph.D. Candidate, Department of Physics, National Changhua University of Education Advisor: Prof. Yen-Kuang Kuo

2 Tsun-Hsin Wang/BLL/NCUE
Outline Introduction and Motivation Device Structure Simulation Results Conclusion Reference Tsun-Hsin Wang/BLL/NCUE

3 Tsun-Hsin Wang/BLL/NCUE
Introduction S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009). More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes (LEDs) based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting. Tsun-Hsin Wang/BLL/NCUE

4 Tsun-Hsin Wang/BLL/NCUE
Introduction E. F. Schubert and J. K. Kim, Science 308, 5276 (2005). Energy savings and environmental benefits Spectral power distribution Spatial distribution Color temperature Temporal modulation Polarization properties Spontaneous polarization =>Asymmetric wurtzite Piezoelectric polarization =>Lattice mismatch Tsun-Hsin Wang/BLL/NCUE

5 Tsun-Hsin Wang/BLL/NCUE
Motivation Development of InGaN LEDs GaN-InGaN-GaN barriers InGaN-AlGaN-InGaN barriers Slightly-doped step-like electron blocking layer (EBL) Shallow first well Kuo et al., Appl. Phys. Lett. 99, (2011). Kuo et al., Appl. Phys. Lett. 100, (2012). Kuo et al., IEEE Photonics Technol. Lett. 24, (2012). Wang et al., IEEE Photonics Technol. Lett. (2012). Tsun-Hsin Wang/BLL/NCUE

6 Tsun-Hsin Wang/BLL/NCUE
Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Kuo et al., Appl. Phys. Lett. 95, (2009). Tsun-Hsin Wang/BLL/NCUE

7 Tsun-Hsin Wang/BLL/NCUE
Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Tsun-Hsin Wang/BLL/NCUE

8 Tsun-Hsin Wang/BLL/NCUE
Device Structure p-contact p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Tsun-Hsin Wang/BLL/NCUE

9 Tsun-Hsin Wang/BLL/NCUE
Device Structure Drawbacks of polarization electric field: Serious tilting of energy band Severe leakage current of electrons Insufficient injection efficiency of holes Nonradiative Auger recombination induced by non-uniform distribution of carriers => Efficiency droop! Tsun-Hsin Wang/BLL/NCUE

10 Tsun-Hsin Wang/BLL/NCUE
Device Structure p-contact composition doping (1018 cm–3) conventional EBL (original) Al0.15Ga0.85N 1.2 slightly-doped EBL 0.6 slightly-doped step-like EBL Al0.075Ga0.925N GaN p-GaN p-AlGaN i-InGaN/GaN n-contact n-GaN n-GaN i-GaN sapphire Impact ionization Hole concentration is conventionally 1% of dopant concentration. Tsun-Hsin Wang/BLL/NCUE

11 Tsun-Hsin Wang/BLL/NCUE
Simulation Results Effective potential height Conduction band: electron leakage current Valence band: hole injection efficiency Tsun-Hsin Wang/BLL/NCUE

12 Tsun-Hsin Wang/BLL/NCUE
Simulation Results Effective potential height Conduction band: electron leakage current Valence band: hole injection efficiency Tsun-Hsin Wang/BLL/NCUE

13 Tsun-Hsin Wang/BLL/NCUE
Simulation Results Last barrier Two dimensional electron gas (2DEG) Tsun-Hsin Wang/BLL/NCUE

14 Tsun-Hsin Wang/BLL/NCUE
Simulation Results Tsun-Hsin Wang/BLL/NCUE

15 Tsun-Hsin Wang/BLL/NCUE
Simulation Results Tsun-Hsin Wang/BLL/NCUE

16 Tsun-Hsin Wang/BLL/NCUE
Conclusion The advantages of blue InGaN LED with slight-doped step-like EBL are studied numerically. According to the simulation results, the LED has enhanced carrier concentrations in the QWs due to appropriately modified energy band diagrams which are favorable for the injection of holes without the price of confinement of electrons. Tsun-Hsin Wang/BLL/NCUE

17 Tsun-Hsin Wang/BLL/NCUE
Reference T.-H. Wang and Y.-K. Kuo, IEEE Photonics Technol. Lett. accepted (2012). Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and J.-D. Chen, IEEE Photonics Technol. Lett. 24, 1506 (2012). Y.-K. Kuo and T.-H. Wang, IEEE J. Quantum Electron. 48, 946 (2012). Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, Appl. Phys. Lett. 100, (2012).  Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and M.-C. Tsai, Appl. Phys. Lett. 99, (2011). Tsun-Hsin Wang/BLL/NCUE

18 Tsun-Hsin Wang/BLL/NCUE
Acknowledgement: This work was supported by the National Science Council under grant NSC M MY3. Thank you for your attention! Tsun-Hsin Wang/BLL/NCUE

19 Tsun-Hsin Wang/BLL/NCUE
Q & A – Physical models Poisson equation: ∇2V=−ρ /ε, where ρ: volume charge density, ε: dielectric constant. Continuity equation: ∇J+∂ρ/∂t=0, where J: current density, t: time. Complex wave equation: ∇2W+k2(ε−β2)W=0, where W: optical wave function, k: wave vector, β: real eigen-value. Rate equation: ∂S/∂t=c(g−α)/n, where c: speed of light, n: refractive index, g: gain, α: loss, S: photon number. Gain equation: g=α+[ln(1/R1R2)]2L, where R: reflectance of mirrors, L: cavity length. APSYS by Crosslight Software Inc. Tsun-Hsin Wang/BLL/NCUE

20 Tsun-Hsin Wang/BLL/NCUE
Q & A – Physical models Equations Parameters Poisson equation: V, n, p, S, W, g Continuity equation: V, n, p Complex wave equation: n, p, S, W, g Rate equation: n, p, W, lambda, g Gain equation: n, p, lambda, g V: potential, n and p: electron and hole concentration, S: photon number, W: optical field intensity, lambda: wavelength, g: gain. APSYS by Crosslight Software Inc. Tsun-Hsin Wang/BLL/NCUE

21 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Polarization Vurgaftman et al., J. Appl. Phys. 94, 3675 (2003). Tsun-Hsin Wang/BLL/NCUE

22 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Polarization Wu, J. Appl. Phys. 106, (2009). Tsun-Hsin Wang/BLL/NCUE

23 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Energy band gap Wu, J. Appl. Phys. 106, (2009). Tsun-Hsin Wang/BLL/NCUE

24 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Energy band gap Wu, J. Appl. Phys. 106, (2009). Tsun-Hsin Wang/BLL/NCUE

25 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Mobility Kuo et al., IEEE J. Quantum Electron. 46, 1214 (2010). Tsun-Hsin Wang/BLL/NCUE

26 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Recombination rate Kuo et al., IEEE J. Quantum Electron. 46, 1214 (2010). Tsun-Hsin Wang/BLL/NCUE

27 Tsun-Hsin Wang/BLL/NCUE
Q & A – Parameters Efficiency droop Tsun-Hsin Wang/BLL/NCUE


Download ppt "Advisor: Prof. Yen-Kuang Kuo"

Similar presentations


Ads by Google