Download presentation

Presentation is loading. Please wait.

Published byBrian Snow Modified over 3 years ago

2
MADISON’S CURRENT WEATHER Madison Weather at 1000 AM CDT 27 JUN 2002 Updated twice an hour at :05 and :25 Temperature: 72F ( 22C) Dewpoint: 59F ( 15C) Relative Humidity: 64% Winds from the NW (330 degs) at 10 mph. Pressure: 1011.3 millibars. Altimeter:29.88 inches of mercury. The prevailing visibility was 10 miles.

3
ATM OCN 100 Summer 2002 2

4
3 CURRENT VISIBLE

5
ATM OCN 100 Summer 2002 4 Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts and Radar

6
ATM OCN 100 Summer 2002 5 Current Surface Winds with Streamlines & Isotachs (“iso” = equal & “tach” = speed) H L L H H L L

7
ATM OCN 100 Summer 2002 6 Yesterday’s High Temperatures ( o F) – (1961-90) Average High Temperatures

8
ATM OCN 100 Summer 2002 7 Current Temperatures ( ° F) & Isotherms (“iso” = equal +”therm” = temperature)

9
ATM OCN 100 Summer 2002 8 Current Temperatures ( o F) – 24 Hrs Ago

10
ATM OCN 100 Summer 2002 9 CURRENT IR

11
ATM OCN 100 Summer 2002 10 Current Dewpoints ( o F)

12
ATM OCN 100 Summer 2002 11 Current UVI Forecast

13
ATM OCN 100 Summer 2002 12 Tomorrow AM Forecast Map

14
ATM OCN 100 Summer 2002 13 ANNOUCEMENTS u Homework #1 is graded & returned today – –See Ans. Key at http://www.aos.wisc.edu/~hopkins/homework u Homework #2 is due Wed. u 1 st Hour Exam is scheduled for Wed. –See Study sheet at http://www.aos.wisc.edu/~hopkins/exams

15
ATM OCN 100 Summer 2002 14 ATM OCN 100 - Summer 2001 LECTURE 7 ATMOSPHERIC ENERGETICS: RADIATION (con’t.) u A. Introduction u B. Radiant Energy - Fundamentals

16
ATM OCN 100 Summer 2002 15 Electromagnetic Radiation Fundamentals

17
ATM OCN 100 Summer 2002 16 Electromagnetic Radiation Emission/Absorption as a function of Temperature Total radiation emitted/absorbed T 4 Peak emission wavelength 1/T

18
ATM OCN 100 Summer 2002 17 ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Inverse Square Relationship –Intensity of incident radiation varies inversely with square of distance from radiation source;

19
ATM OCN 100 Summer 2002 18 ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Inverse Square Relationship –Intensity of incident radiation varies inversely with square of distance from radiation source;

20
ATM OCN 100 Summer 2002 19 INVERSE SQUARE LAW (con’t.)

21
ATM OCN 100 Summer 2002 20 INVERSE SQUARE LAW (con’t.) Earth

22
ATM OCN 100 Summer 2002 21 ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Zenith Angle Relationship –Intensity of incoming radiation is: F greatest for vertically oriented rays; F least for rays that parallel horizontal surface. –Intensity of incoming radiation is proportional to cosine of incident angle (defined as zenith angle)

23
ATM OCN 100 Summer 2002 22 COSINE ANGLE RELATIONSHIP (con’t.) Sun at zenith Sun on horizon

24
ATM OCN 100 Summer 2002 23 Solar Altitude Angles at Different Latitudes Fig. 2.6 Moran and Morgan (1997)

25
ATM OCN 100 Summer 2002 24 C. THE EARTH, THE SUN and THE RADIATION LINK u The Sun & Solar radiation –A star with surface temperature 6000 K; –Peak radiation m.

26
ATM OCN 100 Summer 2002 25 Our Sun [Space Environment Center]

27
ATM OCN 100 Summer 2002 26 Our Sun last Night [NOAA Space Environment Center] H-Alpha Image

28
ATM OCN 100 Summer 2002 27 Our Sun from Yesterday [Space Environment Center] H-Alpha Image Helium Image

29
ATM OCN 100 Summer 2002 28 Sunspot Numbers Fig 20.5 Moran & Morgan (1997)

30
ATM OCN 100 Summer 2002 29 Extra-atmospheric Solar Radiation See Fig 2.3, Moran & Morgan (1997)

31
ATM OCN 100 Summer 2002 30 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Receipt of solar radiation by Earth- atmosphere system –Solar Constant Incoming solar radiation received on surface that is: F Perpendicular to sun’s rays F Above atmosphere; F at mean earth-sun distance. –Currently accepted value: 2 cal/cm 2 /min = 1370 Watt/m 2.

32
ATM OCN 100 Summer 2002 31 INVERSE SQUARE LAW (con’t.) Earth

33
ATM OCN 100 Summer 2002 32 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Our place in the Sun -- Annual & diurnal motions of Earth –Solstices & equinoxes –Local noon & sunrise/sunset

34
ATM OCN 100 Summer 2002 33 Earth’s Orbit of Sun – The Cause of the Seasons See Fig. 2.10 Moran & Morgan (1997)

35
ATM OCN 100 Summer 2002 34 Earth’s Orbit of Sun – The Cause of the Seasons See Fig. 2.10 Moran & Morgan (1997)

36
ATM OCN 100 Summer 2002 35 DAYLIGHT-NIGHT (23 JUN)

37
ATM OCN 100 Summer 2002 36 DAYLIGHT-NIGHT (21 SEP)

38
ATM OCN 100 Summer 2002 37 DAYLIGHT-NIGHT (22 DEC)

39
ATM OCN 100 Summer 2002 38 Latitudinal Dependency

40
ATM OCN 100 Summer 2002 39 Solar Altitude Angles at Different Latitudes Fig. 2.6 Moran and Morgan (1997)

41
ATM OCN 100 Summer 2002 40 Our Tilted Earth

42
ATM OCN 100 Summer 2002 41 Sun Paths for Mid Latitudes Fig. 2.14 Moran and Morgan (1997)

43
ATM OCN 100 Summer 2002 42 Diurnal Variation in Solar Altitude Angle at Madison

44
ATM OCN 100 Summer 2002 43 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Disposition of solar radiation in Earth- atmosphere system –Reflected –Scattered –Absorbed –Transmitted u Albedo where... where...

45
ATM OCN 100 Summer 2002 44 ALBEDO u The reflectivity of a surface: u Albedo of surfaces: u Implications

46
ATM OCN 100 Summer 2002 45 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Terrestrial radiation –Emitted from earth-atmosphere system; –Radiating temperature –Peak radiation region m.

47
ATM OCN 100 Summer 2002 46 Terrestrial or Long Wave Radiation Emitted at 300 K See Fig 2.4, Moran & Morgan (1997)

48
ATM OCN 100 Summer 2002 47 Consequences u If more input than loss –Then Radiative heating u If more loss than input –Then Radiative cooling

49
ATM OCN 100 Summer 2002 48 ATM OCN 100 - Summer 2002 LECTURE 8 ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETS u A. INTRODUCTION: – How does Planet Earth respond to solar heating? F Why does temperature vary spatially? F How do the diurnal and annual temperature cycles develop? – How does Planet Earth maintain a habitable environment?

50
ATM OCN 100 Summer 2002 49 Tropical Storm Keith

51
ATM OCN 100 Summer 2002 50

52
51 B. ENERGY (HEAT) BUDGETS u Energy budget philosophy INPUT = OUTPUT + STORAGE INPUT = OUTPUT + STORAGE u Planetary annual energy budget – Short wave radiation components – Long wave radiation components – Assume INPUT = OUTPUT for entire planet & over year (since)...

53
ATM OCN 100 Summer 2002 52 ANNUAL GLOBAL AVERAGE TEMPERATURE See Fig. 19.9 Moran & Morgan (1997)

54
ATM OCN 100 Summer 2002 53 Planetary Radiative Energy Budget From Geog. 101 UW-Stevens Point

55
ATM OCN 100 Summer 2002 54 Background - The Earth, The Sun & The Radiation Link u INPUT -- Solar Radiation u OUTPUT -- Terrestrial Radiation

56
ATM OCN 100 Summer 2002 55 Background - The Earth, The Sun & The Radiation Link u INPUT -- Solar Radiation –From Sun radiating at temperature 6000 K; –Peak radiation m; –Solar Constant 2 cal/cm 2 /min or 1370 W/m 2

57
ATM OCN 100 Summer 2002 56 Extra-atmospheric Solar Radiation See Fig 2.3, Moran & Morgan (1997)

58
ATM OCN 100 Summer 2002 57 Background - The Earth, The Sun & The Radiation Link u OUTPUT -- Terrestrial radiation –Emitted from earth-atmosphere system; –Radiating temperature –Peak radiation region m.

59
ATM OCN 100 Summer 2002 58 Terrestrial or Long Wave Radiation Emitted at 300 K See Fig 2.4, Moran & Morgan (1997)

60
ATM OCN 100 Summer 2002 59 Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)

61
ATM OCN 100 Summer 2002 60 Short-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)

62
ATM OCN 100 Summer 2002 61 PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth- atmosphere system –Reflected –Scattered –Absorbed –Transmitted u Albedo

63
ATM OCN 100 Summer 2002 62 PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth-atmosphere system –Reflected –Scattered –Absorbed –Transmitted

64
ATM OCN 100 Summer 2002 63 ALBEDO u The reflectivity of a surface: u Albedo of surfaces: u Implications

65
ATM OCN 100 Summer 2002 64 Short-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)

66
ATM OCN 100 Summer 2002 65 PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth- atmosphere system – Reflected – Scattered – Absorbed – Transmitted u Implications Only 70% of available solar radiation used by earth-atmosphere-ocean system!

67
ATM OCN 100 Summer 2002 66 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Terrestrial radiation –Emitted from earth-atmosphere system

68
ATM OCN 100 Summer 2002 67 Long-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)

69
ATM OCN 100 Summer 2002 68 PLANETARY ENERGY BUDGETS Long Wave Components u Disposition of long radiation in Earth-atmosphere system – Emitted – Absorbed – Transmitted

70
ATM OCN 100 Summer 2002 69 PLANETARY ENERGY BUDGETS Long Wave Components (con’t.) u Atmospheric or “Greenhouse” Effect –Background –“Greenhouse Gases” [H 2 O, CO 2, CH 4 ]

71
ATM OCN 100 Summer 2002 70 Selective Absorption of radiation by atmospheric constituents Fig. 2.24 Moran & Morgan (1997)

72
ATM OCN 100 Summer 2002 71 CURRENT VISIBLE

73
ATM OCN 100 Summer 2002 72 CURRENT IR

74
ATM OCN 100 Summer 2002 73 PLANETARY ENERGY BUDGETS Long Wave Components (con’t.) u Atmospheric or “Greenhouse” Effect –Process u Implications

75
ATM OCN 100 Summer 2002 74 Long-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)

76
ATM OCN 100 Summer 2002 75 Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)

77
ATM OCN 100 Summer 2002 76 PLANETARY ENERGY BUDGETS Non-Radiative Components u Disposition of non-radiative fluxes in Earth-atmosphere system u Types of non-radiative fluxes – Sensible heat transport – Latent Heat transport u Implications Our planet is habitable!

78
ATM OCN 100 Summer 2002 77 Relative magnitudes of energy flow components from earth’s surface Fig. 4.6 Moran & Morgan (1997)

79
ATM OCN 100 Summer 2002 78 PLANETARY ENERGY BUDGETS (con’t.) u ANNUAL AVERAGE Input = Output Input = Output Absorbed solar = Emitted terrestrial Absorbed solar = Emitted terrestrial u LATITUDINAL DISTRIBUTION – Input & Output Curves – Energy surplus & deficit regions – Meridional energy transport in: F Atmosphere (78% in NH, 92% in SH at 35°) – Air Mass Exchange – Storms F Oceans (22% in NH, 8% in SH at 35°)

80
ATM OCN 100 Summer 2002 79 Annual Average Radiational Energy Budget as a function of latitude Fig. 4.7 Moran & Morgan (1997)

81
ATM OCN 100 Summer 2002 80 Atmospheric Circulation

82
ATM OCN 100 Summer 2002 81 OCEAN CURRENTS

83
ATM OCN 100 Summer 2002 82 Example of Satellite-Based Radiometers Sea Surface Temperatures from SSEC Holy Cross Trondheim

84
ATM OCN 100 Summer 2002 83

85
84 ENERGY BUDGETS (con’t.) u LOCAL ENERGY BUDGETS u THE FORCING (Energy Gain) –Sunlight & Downward IR u THE RESPONSE – Emitted Long Wave Radiation – Temperature & Temperature Variations

86
ATM OCN 100 Summer 2002 85 ENERGY BUDGETS (con’t.) u LOCAL ENERGY BUDGETS u THE FORCING (Energy Gain) – Radiative Controls – Air Mass Controls where…

87
ATM OCN 100 Summer 2002 86 ENERGY BUDGETS (con’t.) u THE FORCING (Energy Gain) –Radiative Controls F Latitude F Clouds F Albedo – Air Mass Controls F Warm Air Advection & Cold Air Advection

88
ATM OCN 100 Summer 2002 87 Effect of Latitude New York City Miami

89
ATM OCN 100 Summer 2002 88

90
89 Effect of Cloud Cover Los Angeles San Francisco

91
ATM OCN 100 Summer 2002 90

92
91 ENERGY BUDGETS (con’t.) u THE RESPONSE – Temperature & Temperature Variations – Features of local energy budgets – Annual F Summer maximum temperature F Winter minimum temperature – Diurnal F Afternoon maximum temperature F Pre-dawn minimum temperature

93
ATM OCN 100 Summer 2002 92 ENERGY BUDGETS (con’t.) u THE FORCING (Energy Gain) – Radiative Controls F Latitude F Clouds F Albedo – Air Mass Controls F Warm Air Advection & Cold Air Advection

94
ATM OCN 100 Summer 2002 93 Examples of (A) Cold Air Advection & (B) Warm Air Advection Fig. 4.11 Moran & Morgan (1997)

95
ATM OCN 100 Summer 2002 94 Surface Weather Map from Today with Isobars & Fronts

96
ATM OCN 100 Summer 2002 95 Surface Weather Map from Today with Isobars & Fronts

97
ATM OCN 100 Summer 2002 96 Current Temperatures ( o F) – 24 Hrs Ago

98
ATM OCN 100 Summer 2002 97 ENERGY BUDGETS (con’t.) u SURFACE FACTORS TO CONSIDER in the Thermal Response – Albedo (reflectivity) – Conductivity – Surface Moisture – Specific Heat Quantity of heat required to change temperature of a unit mass of substance by 1 Celsius degree.

99
ATM OCN 100 Summer 2002 98 Distinguishing Sensible & Latent Heats See Fig 4.3 Moran & Morgan (1997)

100
ATM OCN 100 Summer 2002 99 Thermal Conductivity Example: Change in Snow Cover See Figure 3.6, Moran & Morgan (1997)

101
ATM OCN 100 Summer 2002 100 TEMPERATURE RESPONSE for substances with differing specific heats See Table 3.2, Moran & Morgan (1997)

102
ATM OCN 100 Summer 2002 101 Effect of Large Water Bodies Los Angeles Dallas

103
ATM OCN 100 Summer 2002 102

104
103 Example of Satellite-Based Radiometers Sea Surface Temperatures from SSEC

105
ATM OCN 100 Summer 2002 104

106
105

107
106

108
107 ENERGY BUDGETS (con’t) u Local energy budgets u Features of local energy budgets – Annual F Summer maximum temperature F Winter minimum temperature – Diurnal F Afternoon maximum temperature F Pre-dawn minimum temperature

109
ATM OCN 100 Summer 2002 108

110
109 Daily Heating

111
ATM OCN 100 Summer 2002 110 January Temperatures - Madison, WI (1981-90)

112
ATM OCN 100 Summer 2002 111 July Temperatures - Madison, WI (1981-90)

Similar presentations

Presentation is loading. Please wait....

OK

17.1 Atmosphere Characteristics

17.1 Atmosphere Characteristics

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google