Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fiber-laser-based NICE-OHMS

Similar presentations


Presentation on theme: "Fiber-laser-based NICE-OHMS"— Presentation transcript:

1 Fiber-laser-based NICE-OHMS
for Trace Species Detection Aleksandra Foltynowicz Weiguang Ma Ove Axner Laser Physics Group Department of Physics Umeå University Umeå, Sweden International Symposium on Molecular Spectroscopy OSU, Columbus, Ohio June 23, 2009

2 Principles of NICE-OHMS
Noise-Immune Cavity-Enhanced ? resonant cavity increased interaction length enhanced power Optical Heterodyne Molecular Spectrometry frequency modulation for noise reduction high sensitivity detectability – cm-1 close to shot-noise-limited performance weak molecular overtone transitions trace gas detection 2

3 Principles of NICE-OHMS Frequency Modulation
electro-optic modulator FM triplet RF signal (MHz) modulation index no analyte – constant intensity Laser EOM Absorber PD double balanced mixer Phase shifter with analyte – signal at vm low pass filter LP FM signal in-phase dispersion out-of-phase absorption 3

4 Principles of NICE-OHMS Cavity Enhancement – Fabry-Perot Resonator
EOM PBS PD Laser frequency control servo Ph DBM LP Cavity finesse Laser effective length intracavity power free spectral range Pound-Drever-Hall laser stabilization technique cavity mode width 4

5 Principles of NICE-OHMS
Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy alternative name: Cavity-Enhanced Frequency Modulation Spectroscopy absorption dispersion Noise Immunity 5

6 Experimental Setup EDFL 1531 nm Laser frequency control fm-NICE-OHMS
fiber EOM polar. lens PBS Cavity with Absorber Laser frequency control Phase 20 MHz DBM fm-NICE-OHMS signal Gain LP Phase Scan DBM wm-NICE-OHMS signal Lock-in OI OI 360 MHz FSR control Phase BP 380 MHz DBM PD1 PD2 fiber polarizer EDFL 1531 nm PD – photodetector PBS – polarizing beamsplitter OI – optical isolator DBM – double balanced mixer LP – low pass filter BP – bandpass filter F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, J. Opt. Soc. Am. B 24 (2007). F. M. Schmidt, A. Foltynowicz, W. Ma, T.Lock, and O. Axner, Opt. Express 15 (2007).

7 Experimental Setup Fiber Laser
DFB-laser pumped erbium doped fiber laser Extremely narrow free-running linewidth (1 kHz/120 µs) Fast tuning (PZT stretching the fiber) with bandwidth up to 100 kHz Low bandwidth and simple transfer function of the locking servo Gaussian beam – easy mode-matching to the cavity Compact setup – short free-space optical path Working range (our laser) – nm, detection of C2H2, NH3, N2O, CH2O, CO2, CH4 Limited fast (PZT) tuning range (ca 3 GHz) Limited total (temperature) tuning range (1 nm) Presently available in three wavelength ranges (1030–1121, 1525–1585 and 1710–2100 nm) PZT resonances at kHz frequencies, limiting the bandwidth of locking servo 7

8 Experimental Setup Fiber-coupled EOM, Cavity
LiNbO3 phase modulator Wide working frequency range (30 kHz – 10 GHz) – one modulator sufficient to create sidebands at both frequencies needed in the experiment Low half-wave voltage (ca 6 V) – low RF input power, less electronic pick-up Smaller and less expensive than free-space EOMs No optical alignment needed Cavity Zerodur spacer Two ring-shaped piezo actuators Finesse 4800, 5700 Length 40 cm

9 NICE-OHMS Detection Modes
Doppler-broadened sub-Doppler fm-NICE-OHMS wm-NICE-OHMS absorption CO2 absorption CO2 absorption C2H2 fm C2H2 dispersion CO2 dispersion C2H2 wm C2H2 dispersion CO2 9

10 Doppler-broadened Signals Lineshapes
absorption dispersion Standard FM nomenclature and Fourier-series-based WM theory Detection at arbitrary phase fm-NICE-OHMS 1000 ppm of C2H2 at 130 mTorr of N2 wm-NICE-OHMS F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, J. Opt. Soc. Am. B 24 (2007). A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, J. Opt. Soc. Am. B 26 (2009).

11 Doppler-broadened Signals Signal Strength
Independent of FM detection phase Influence of optical saturation absorption signal reduced dispersion signal unaffected <<1 Linear with pressure/concentration for small absorption 1000 ppm of C2H2 at 10 mTorr of N2 Saturation power F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, J. Opt. Soc. Am. B 24 (2007). W. Ma, A. Foltynowicz, and O. Axner, J. Opt. Soc. Am. B 25 (2008). A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, J. Opt. Soc. Am. B 25 (2008).

12 Sub-Doppler Signals Lineshapes
On-resonance dispersion signal Lorentzian up to high degrees of saturation 70 8.4 3.7 0.4 0.19 0.02 fm-NICE-OHMS 10 µTorr of C2H2 4.1 W 0.49 W wm-NICE-OHMS A. Foltynowicz, W. Ma, and O. Axner, Opt. Express 16 (2008). 12

13 Sub-Doppler Signals Signal Strength
Sub-Doppler optical phase shift high degrees of saturation revised expression not related to attenuation by the Kramers-Kronig relations Signal strength pressure dependence concentration dependence Axner et al. Ma, Hall et al. O. Axner, W. Ma, and A. Foltynowicz, J. Opt. Soc. Am. B 25 (2008). A. Foltynowicz, W. Ma, and O. Axner, Opt. Express 16 (2008). 13

14 Sensitivity Doppler-broadened sub-Doppler cavity parameters
minimum detectable absorption 8  cm-1 (0.7 s) minimum detectable sub-Doppler phase shift 5.7  cm-1 Hz-1/2 finesse 4800 FSR 380 MHz cavity length 40 cm effective length 1.2 km intracavity power < 4.5 W transitions parameters gas wavelength [nm] transition strength [cm-1/(molec cm-2)] C2H2 1.2  10-20 CO2 8.4  10-26 fm-NICE-OHMS signal 6  10-9 cm-1 of pure CO2 Allan variance 25 ppm of C2H2 in 20 mTorr of N2 Detection limit for C2H2 3.5 nTorr 46 ppt mTorr 40 ppb F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock and O. Axner, Opt. Express 15 (2007). A. Foltynowicz, W. Ma, and O. Axner, Opt. Express 16 (2008).

15 Summary First realization of fiber-laser-based NICE-OHMS
easily stabilized laser fiber-coupled components compact setup a step towards practical trace species detection Theoretical description of signal shape and strength Doppler-broadened NICE-OHMS sub-Doppler NICE-OHMS influence of optical saturation High sensitivity Doppler-broadened absorption 8  cm-1 (46 ppt of C2H2 ) sub-Doppler optical phase shift 5.7  cm-1 Hz-1/2 (0.8 nTorr/110-12 atm of C2H2) Dynamic range

16 Publication list F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner: Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range, J. Opt. Soc. Am. B 24, (2007) F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner: Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability, Opt. Express 15, (2007) W. Ma, A. Foltynowicz, and O. Axner: Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions, Opt. Soc. Am. B 25, (2008) A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner: Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions, J. Opt. Soc. Am. B 25, (2008) O. Axner, W. Ma, and A. Foltynowicz: Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised, J. Opt. Soc. Am. B 25, (2008) A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner: Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential, Appl. Phys. B 92, (2008) A. Foltynowicz, W. Ma, and O. Axner: Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection, Opt. Express 16, (2008) A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner: Wavelength modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit, to be published in J. Opt. Soc. Am. B (2009)


Download ppt "Fiber-laser-based NICE-OHMS"

Similar presentations


Ads by Google