Presentation is loading. Please wait.

Presentation is loading. Please wait.

Disk-outflow Connection and the Molecular Dusty Torus Moshe Elitzur University of Kentucky.

Similar presentations


Presentation on theme: "Disk-outflow Connection and the Molecular Dusty Torus Moshe Elitzur University of Kentucky."— Presentation transcript:

1 Disk-outflow Connection and the Molecular Dusty Torus Moshe Elitzur University of Kentucky

2 Unification Scheme for AGN M ~ 10 6 – 10 10 M  R s ~ 10 11 – 10 15 cm T oroidal O bscuration R equired by U nification S chemes Obscuring matter — optically thick dusty clouds Krolik & Begelman ‘88

3 Torus Properties — Obscuration  Equatorial  V >~ 30  40  N H >~ 10 23 cm -2 f 2 — fraction of obscured sources = N 2 /(N 1 + N 2 ) Seyferts:f 2 = 70% Schmitt+ ‘01 f 2 = 50% Hao+ ‘05 f 2 = sin  = 0.5 — 0.7  ≈ 30˚ — 45˚ H/R o ~ 1 H

4 Torus: Direct Evidence

5 NGC 1068 D = 14.4 Mpc 0.1” = 7.2 pc Weigelt+ 04 bispectrum specle interferometry Jaffe+ 04 VLTI 8-13  m

6 Torus Size — Observations  NGC1068: 2  m imaging – R ~ 1 pc (Weigelt+ 04) 8―13  m VLTI – R ~ 2 pc (Jaffe+ 04)  Cen A: 8―13  m VLTI – R ~ 0.3 pc (? Meisenheimer+ 07)  Circinus: 2  m – R ~ 1 pc (Prieto+ 04) 8―13  m VLTI – R ~ 1 pc (Tristram+ 08) 8 & 18  m – R < 2 pc (Packham+ 05)  NGC1097 & NGC5506: 2  m – R < 5 pc (Prieto+ 04) All observations are consistent with R out /R d no larger than ~20  30, and perhaps even only ~5  10

7 Torus orientation & the host galaxy  AGN axis (jet) randomly oriented with respect to galactic disk in Syefert galaxies (Kinney et al 00) nuclear dust disk in radio galaxies (Schmitt et al 02)

8 NGC 1068  Galaxy ~ face on  Torus ~ edge on (≤5º): H 2 O masers Gallimore+ 01 NLR kinematics Crenshaw+ 00

9 NGC 1068, CO & H 2 observations Galliano et al ’03: H/R ~ 0.15 20 pc 140 pc Molecular disk outside “the torus” Disk & torus roughly aligned 15º Schinerer+ 00: at R ~ 70 pc, H ~ 10 pc  H/R ~ 0.15

10 NGC 1068, H 2 SINFONI observations Muller Sanchez+ 08: Infall at ~ 10 pc, no rotation! Torus size <~ 10 pc

11 NGC 1068, H 2 O Masers & 8 GHz Continuum Gallimore+ 04 0.4 pc

12 What is the Torus? Smooth continuation of the BLR

13 Risaliti, Elvis & Nicastro 02: Smooth distribution of dusty and dust-free (BLR) clouds X-ray Obscuration  Dusty clouds absorb both UV/optical and X-rays  Dust-free clouds absorb only X-rays

14 Broad Emission Line NIR(K-band) Broad-emission line lags for objects that also have infrared lags Including Hi & Lo ionization lines) (nucleus) Lag Times ― BLR and near-IR Suganuma et al 06 BLR is dust bound (Netzer & Laor 93) No correlation with M  !!! (  luminosity)

15 RdRd r < R d — dust free clouds: Broad Lines Region/ X-ray Obscuration Region BLR/XOR r > R d — dusty clouds: Toroidal Obscuration Region TOR TOR = Torus The Dust-Sublimation Transition

16 Everett & Konigl ‘00 Bottorff+ 97 The Disk Wind Paradigm

17 Grand Unification Theory masers Emmering, Blandford & Shlosman 92 BLR/XOR B road L ines R egion/ X -ray O bscuration R egion WA W arm A bsorber TOR T oroidal O bscuration R egion

18 Clumpy Torus Modeling  N 0 = 5 – 10 clouds   = 30° – 60°   V = 30 – 120  q = 1 – 2  R d = 0.4L ½ 45 pc; R o ≥ 5 R d Standard ISM dust works fine N  N 0 exp(-  2 /  2 )/r q Nenkova et al ‘02, ‘08 s

19 Cloud Properties in TOR Outflow IR modeling:  v ~ 30 – 120  N H ~ 10 22 – 10 23 cm -2 n > 10 7 M ●7 / r pc 3 cm -3 R c < 10 16 N H,23 r pc 3 / M ●7 cm M c < 7·10 -3 N H,23 R c,16 2 M  B ~ 1.5  1km/s n 7 1/2 mG Elitzur & Shlosman 06 Resistance to tidal shearing:

20 Circinus Water Masers Greenhill+ 03 0.2 pc

21 Circinus VLTI Imaging Tristram+ 07

22 Geometry  Clouds rise and expand   Column density decreases   Toroidal structure for both BLR, XOR and TOR

23 TOR Mass Outflow Rate Torus should disappear at small L/L Edd ! v(R d )  v K (R d )  (M /R d ) ½  (L Edd /L ½ ) ½ R d  L ½

24 Torus Disappearance at Low Luminosities  Nucleus visible in FR I radio galaxies (Chiaberge+ 99)  … and LINERs too (Maoz+ 05)  LINER 1 & 2 UV colors similar (A V <~ 1)  No torus dust emission in M87 (Whysong & Antonucci 04; Perlman+ 07)  No torus dust emission in FR I and ~ half of FR II (van der Wolk+ 08)

25 If only TOR is removed, all low-luminosity AGN become type 1 HOWEVER  Both type 1 and type 2 LINERs do exist (Maoz et al 05)  “true” type 2 AGN exist at L < 10 42 erg s -1 (Panessa & Bassani 02; Laor 03) THEREFORE BLR must disappear at some lower L

26 Ho 08: BLR disappears at LLAGN

27  Wind diminishes — mass outflow directed to jets (?)  Ho ‘02, Sikora et al ‘07: Radio loudness (L rad /L opt ) varies inversely with M acc !. BLR TOR

28 R = L rad /L opt = L/L Edd Radio-loudness; Sikora+ ‘07

29  Wind diminishes — mass outflow directed to jets (?)  Ho ‘02, Sikora et al ‘07: Radio loudness (L rad /L opt ) varies inversely with M acc !.  Similar effect in X-ray binaries

30 Accretion Rate (L/L Edd ) Radio Loudness Full Unification Scheme; both type 1 & 2 molecular outflow extinguished Torus disappears; type 1 only atomic outflow extinguished BLR disappears; “true” type 2 High Low

31 TOR Energy Outflow Rate Negligible in the energy budget

32 Final Speculation  With  ~ 0.1, the required accretion rate is M acc ~ 0.1 L 45 M  yr -1  The AGN phase lasts ~ 10 7  10 8 yrs  Overall accreted mass ~ 10 6  10 7 L 45 M . Is the whole Seyfert phenomenon the accretion of just a single GMC? Are QSO triggered differently (mergers)?


Download ppt "Disk-outflow Connection and the Molecular Dusty Torus Moshe Elitzur University of Kentucky."

Similar presentations


Ads by Google