Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complete History of the Universe (Abridged) Thursday, March 6.

Similar presentations


Presentation on theme: "Complete History of the Universe (Abridged) Thursday, March 6."— Presentation transcript:

1 Complete History of the Universe (Abridged) Thursday, March 6

2 The moment in time when the universe started expanding from its initial extremely dense state. t = 0 The Big Bang

3 t=0: The Big Bang How do we know that this happened? Universe was denser in the past; if we daringly extrapolate backward to infinite density, that was a finite time ago.

4 t=0: The Big Bang Why do we care that this happened? us If the universe had remained dense, it wouldn’t have cooled enough for nuclei, atoms, galaxies, and us to form. (Speaking to an audience of humans, I make no apologies for my human chauvinism.)

5 t = 10 -35 seconds Inflation A brief period when the expansion of the universe was greatly accelerated.

6 t=10 -35 sec: Inflation How do we know? The universe is nearly flat now; it was insanely close to flat earlier. Inflation flattens the universe.

7 t=10 -35 sec: Inflation Why do we care? If the universe hadn’t been flattened, it would have long since collapsed in a Big Crunch or fizzled out in a Big Chill. No inflation, no galaxies.

8 t = 7 minutes Primordial Nucleosynthesis A period when protons and neutrons fused to form helium.

9 t=7 min: Primordial Nucleosynthesis How do we know? The earliest stars contain 75% hydrogen, 25% helium, as predicted from primordial nucleosynthesis. (Later stars contain more helium, made in previous generations of stars.)

10 t=7 min: Primordial Nucleosynthesis Why do we care? It shows we understand what the universe was like when it was less than 10 minutes old. No nucleosynthesis, no periodic table (until the 1 st stars).

11 t = 350,000 years Transparency A period when protons & electrons joined to form neutral atoms. before after

12 t=350,000 years: Transparency How do we know? Cosmic Microwave Background is the “leftover light” from when the universe was hot & opaque.

13 t=350,000 years: Transparency Why do we care? No transparency, no astronomers. If the universe were still opaque, we wouldn’t be able to see distant galaxies.

14 t = 500 million years The First Galaxies A period when gas cools, falls to center of dark halos, and fragments into stars.

15 t=500 million years: First Galaxies How do we know? We see galaxies with large redshift (implying large distance, implying distant past).

16 t=500 million years: First Galaxies Why do we care? No stars, no photosynthesis. We live in a galaxy, orbiting a star.

17 t = 14 billion years Now A period when (more-or-less) intelligent life on Earth wonders about how the universe works.

18 Where do we come from? What are we? Where are we going?

19 Let’s try predicting the future. Sometimes even short-term predictions are wrong… …but I’ll base my predictions on known laws of physics.

20 t = 19 billion years (5 billion years from now) Sun becomes a red giant star. Sun now Sun as red giant

21 t=19 billion years: Sun = red giant How do we know? We see what happens to older stars when they start to run out of hydrogen.

22 t=19 billion years: Sun = red giant Why do we care? The Earth will be toast.

23 After its last hurrah as a red giant, the remnants of the Sun will become a white dwarf.

24 t = 1 trillion years Galaxies remain filled with stellar “corpses”: White dwarfs, neutron stars, black holes. Last stars run out of fuel.

25 t=1 trillion years: Last stars die. How do we know? Lifespan is longest for the thrifty “subcompact” stars barely massive enough for fusion. Eventually, though, they “run out of gas”.

26 t=1 trillion years: Last stars die. Why do we care? Even if our remote descendents huddle around a dim, low-mass star, the light will eventually go out.

27 t = 100 trillion trillion (10 27 ) years The end of galaxies. Encounters between stellar remnants fling some of them out of galaxy, others into a central black hole.

28 t = 10 31 years The growth of black holes. Clusters of gargantuan black holes (10 11 solar masses) in place of clusters of galaxies. Moving black holes radiate gravitational waves (ripples in space-time).

29 Gravitational waves carry away energy (just like electromagnetic waves). Black holes spiral in toward each other, merging to form hyper-gargantuan (10 15 solar masses) black holes.

30 t = 10 45 years The end of protons & neutrons. Protons & neutrons decay into photons, electrons, & positrons (anti-electrons) White dwarfs, neutron stars, & planets disintegrate into expanding clouds of photons, electrons, & positrons.

31 “Black holes ain’t so black.” – Stephen Hawking Black holes emit radiation - if quantum mechanics is taken into account. Particle - antiparticle pairs pop out of vacuum, annihilate shortly afterward.

32 One member of a pair can fall into a black hole, while the other escapes. The black hole appears to be spitting out particles & antiparticles. Where does the particles’ energy come from? The mass of the black hole.

33 t = 10 106 years The end of black holes. Hyper-gargantuan black holes evaporate by the emission of particles & antiparticles. An ever-expanding universe, containing electrons, positrons, photons, & neutrinos, at ever-decreasing density.

34 Brrrr… The Big Chill

35 Some say the world will end in fire, Some say in ice. From what I’ve tasted of desire I hold with those who favor fire. But if it had to perish twice, I think I know enough of hate To say that for destruction ice Is also great And would suffice.

36 1:30 pm Final Exam Tue, Mar 11, 1:30 pm Final Exam Comprehensive Same format as midterm Practice mini-exam available on the class website starting Friday at 5 pm.


Download ppt "Complete History of the Universe (Abridged) Thursday, March 6."

Similar presentations


Ads by Google