Presentation is loading. Please wait.

Presentation is loading. Please wait.

Changes Through Time The History of Life The Theory of Evolution

Similar presentations


Presentation on theme: "Changes Through Time The History of Life The Theory of Evolution"— Presentation transcript:

1 Changes Through Time The History of Life The Theory of Evolution
Primate Evolution Organizing Life’s Diversity Unit Overview – pages

2 14.1 Section Objectives – page 369
Identify the different types of fossils and how they are formed Summarize the major events of the geologic time scale. 14.1 Section Objectives – page 369

3 Section 14.1 Summary – pages 369-379
Early History of Earth Volcanoes might have frequently spewed lava and gases, relieving some of the pressure in Earth’s hot interior. These gases helped form Earth’s early atmosphere. Section 14.1 Summary – pages

4 Section 14.1 Summary – pages 369-379
Early History of Earth About 4.4 billion years ago, Earth might have cooled enough for the water in its atmosphere to condense. This might have led to millions of years of rainstorms with lightning—enough rain to fill depressions that became Earth’s oceans. Section 14.1 Summary – pages

5 Section 14.1 Summary – pages 369-379
History in Rocks There is no direct evidence of the earliest years of Earth’s history. The oldest rocks that have been found on Earth formed about 3.9 billion years ago. Although rocks cannot provide information about Earth’s infancy, they are an important source of information about the diversity of life that has existed on the planet. Section 14.1 Summary – pages

6 Section 14.1 Summary – pages 369-379
Fossils-Clues to the past About 95 percent of the species that have existed are extinct—they no longer live on Earth. Among other techniques, scientists study fossils to learn about ancient species. Section 14.1 Summary – pages

7 Section 14.1 Summary – pages 369-379
Fossils-Clues to the past Types of Fossils A fossil is evidence of an organism that lived long ago that is preserved in Earth’s rocks. Fossils Types Formation A trace fossil is any indirect evidence A trace fossil is any indirect evidence Trace fossils left by an animal and may include a footprint, a trail, or a burrow. When minerals in rocks fill a space Casts left by a decayed organism, they make a replica, or cast, of the organism. A mold forms when an organism is A mold forms when an organism is Molds buried in sediment and then decays, leaving an empty space. Petrified/ Petrified-minerals sometimes penetrate and replace the hard parts of an Permineralized organism. Permineralized-void spaces fossils in original organism infilled by minerals. Amber- At times, an entire organism was Preserved or quickly trapped in ice or tree sap that frozen fossils hardened into amber. Section 14.1 Summary – pages

8 Paleontologists-Detectives to the past
Paleontologists also study fossils to gain knowledge about ancient climate and geography. By studying the condition, position, and location of rocks and fossils, geologists and paleontologists can make deductions about the geography of past environments.

9 Fossil formation For fossils to form, organisms usually have to be buried in mud, sand, or clay soon after they die. Few organisms become fossilized because, without burial, bacteria and fungi immediately decompose their dead bodies. Occasionally, however, organisms do become fossils in a process that usually takes many years. Most fossils are found in sedimentary rocks. (Why not metamorphic or igneous?) These rocks form at relatively low temperatures and pressures that may prevent damage to the organism.

10 The Fossilization Process
A Protoceratops drinking at a river falls into the water and drowns Sediments from upstream rapidly cover the body, slowing its decomposition. Minerals from the sediments seep into the body. Over time, additional layers of sediment compress the sediments around the body, forming rock. Minerals eventually replace all the body’s bone material. Earth movements or erosion may expose the fossil millions of years after it formed.

11 Relative dating Scientists use a variety of methods to determine the age of fossils. One method is a technique called relative dating. If the rock layers have not been disturbed, the layers at the surface must be younger than the deeper layers.

12 Radioactive isotopes are atoms with unstable nuclei that break down, or decay, over time, giving off radiation and forming a new isotope after it decays. Radiometric dating Scientists try to determine the approximate ages of rocks by comparing the amount of a radioactive isotope and the new isotope into which it decays.

13 Radiometric dating . Scientists use carbon-14 to date fossils less than years old. (½ life 5730 years) Errors can occur if the rock has been heated, causing some of the radioactive isotopes to be lost or gained. Scientists use potassium-40 (1/2 life 1.3 billion years), a radioactive isotope that decays to argon-40, to date rocks containing potassium bearing minerals

14 the geologic time scale- chronology, or calendar, of Earth’s history.
An era is a large division in the scale and represents a very long period of time. Precambrian Paleozoic Mesozoic Cenozoic By examining sequences containing sedimentary rock and fossils dating igneous or metamorphic rocks

15 The geologic time scale
The divisions in the geologic time scale are distinguished by the organisms/extinctions that lived during that time interval. The geologic time scale begins with the formation of Earth about 4.6 billion years ago

16 Life during the Precambrian
Scientists also found dome-shaped structures called stromatolites in Australia and on other continents. Stromatolites still form today in Australia from mats of cyanobacteria. Thus, the stromatolites are evidence of the existence of photosynthetic organisms on Earth during the Precambrian. The oldest fossils are about 3.4 billion yrs old Precambrian rock in western Australia. The fossils resemble the forms of modern species of photosynthetic cyanobacteria.

17 Life during the Precambrian
The Precambrian accounts for about 87 percent of Earth’s history. At the beginning of the Precambrian, unicellular prokarotes—(no membrane-bound nucleus)— appear to have been the only life forms on Earth.

18

19

20 Life during the Precambrian
About 1.8 billion years ago, the fossil record shows that more complex eukaryotic organisms, living things with membrane-bound nuclei in their cells, appeared. Major Life Form Prokaryotes Invertebrates Life evolves Eukaryotes Major Events Period Era Precambrian Million Years Ago 4000 3500 1800

21 Life during the Precambrian
By the end of the Precambrian, about 543 million years ago, multicellular eukaryotes, such as sponges and jelly-fishes, diversified and filled the oceans.

22 Diversity during the Paleozoic
Fishes-oldest animals w/backbones ferns and early seed plants - about 400 million years ago. middle Paleozoic amphibians appeared last half of the era, reptiles appeared and began to flourish on land. largest mass extinction recorded @ end of the Paleozoic About 90 % of Earth’s marine species and 70 % of the land species disappeared at this time. Diversity during the Paleozoic

23 The Mesozoic Era is divided into three periods.
These fossils of mammals indicate that early mammals were small and mouse-like.

24 Section 14.1 Summary – pages 369-379
Changes during the Mesozoic Section 14.1 Summary – pages

25 Life in the Mesozoic Recent fossil discoveries support idea - modern birds evolved from one of the groups of dinosaurs many new types of mammals appeared and flowering plants flourished on Earth. Scientists propose that a large meteorite collision caused this mass extinction.

26 Changes during the Mesozoic
The theory of continental drift plate tectonics Earth’s continents have moved during Earth’s history and are still moving today at a rate of about six centimeters per year. Earth’s surface consists of several rigid plates that drift on top of a plastic, partially molten layer of rock. These plates are continually moving-spreading apart, sliding by, or pushing against each other. The movements affect organisms.

27 The Cenozoic Era as recently as 200,000 years ago.
It is the era in which you now live. Mammals began to flourish during the early part of this era.

28 Question 1 What determines the divisions in the geologic time scale?
A. the types of rock formed during the different divisions B. dates based upon radioactive isotope decay C. periodic episodes of mass extinction D. the organisms that lived during that time interval Section 1 Check

29 The answer is D, the organisms that lived during that time interval.
Section 1 Check

30 Question 2 How can scientists determine when a mass extinction occurred in Earth’s history? Answer The fossils from a large percentage of species disappear from the fossil record almost at once. Section 1 Check

31 Question 3 What organisms have occupied Earth for the longest period of time? A. single-celled organisms B. mammals C. reptiles D. land plants Section 1 Check

32 The answer is A. Single-celled organisms have been present on the Earth since the Precambrian period and are still present today. Section 1 Check

33 Question 4 Given that volcanoes have erupted since Earth’s early history, why does volcanic rock not contain many fossils? Answer Lava is subject to high heat and strong pressure changes that prevent fossils from forming in it. Section 1 Check

34 Question 5 If scientists discover an early human fossil lying next to a dinosaur fossil, might they infer that some early humans actually lived at the time of dinosaurs? Answer The answer is no. The two fossils may have come to lie next to one another because of the effects of erosion, earth movements, the movement of water, or other artificial means. Section 1 Check

35 14.2 Section Objectives – page 380
Analyze early experiments that support the concept of biogenesis. Review, analyze, and critique modern theories of the origin of life. Relate hypotheses about the origin of cells to the environmental conditions of early Earth. 14.2 Section Objectives – page 380

36 Origins: The Early Idea
In the past, the ideas that decaying meat produced maggots, mud produced fishes, and grain produced mice were reasonable explanations for what people observed occurring in their environment. Such observations led people to believe in spontaneous generation—the idea that nonliving material can produce life.

37 Spontaneous generation is disproved
In 1668, an Italian physician, Francesco Redi, disproved a commonly held belief at the time—the idea that decaying meat produced maggots, which are immature flies. Redi’s well-designed, controlled experiment successfully convinced many scientists that maggots, and probably most large organisms, did not arise by spontaneous generation Although Redi had disproved the spontaneous generation of large organisms, many scientists thought that microorganisms were so numerous and widespread that they must arise spontaneously-probably from a vital force in the air.

38 Pasteur’s experiments: mid-1800s
no microorganisms, was allowed to contact a broth that contained nutrients

39 Pasteur’s experiment showed that microorganisms do not simply arise in broth, even in the presence of air. From that time on, biogenesis , the idea that living organisms come only from other living organisms, became a cornerstone of biology

40 Origins: The Modern Ideas
No one has yet proven scientifically how life on Earth began. However, scientists have developed theories about the origin of life on Earth from testing scientific hypotheses about conditions on early Earth.

41 Simple organic molecules formed
Scientists hypothesize that two developments must have preceded the appearance of life on Earth. First, simple organic molecules, or molecules that contain carbon, must have formed. Then these molecules must have become organized into complex organic molecules such as proteins, carbohydrates, and nucleic acids that are essential to life.

42 Simple organic molecules formed
In the 1930s, a Russian scientist, Alexander Oparin, hypothesized that life began in the oceans that formed on early Earth. He suggested that energy from the sun, lightning, and Earth’s heat triggered chemical reactions to produce small organic molecules from the substances present in the atmosphere. Then, rain probably washed the molecules into the oceans to form what is often called a primordial soup In 1953, two American scientists, Stanley Miller and Harold Urey, tested Oparin’s hypothesis by simulating the conditions of early Earth in the laboratory.

43

44 Simple organic molecules formed

45 A similar process produces ATP and nucleic acids from small molecules
The formation of protocells: A protocell is a large, ordered structure, enclosed by a membrane, that carries out some life activities, such as growth and division. The next step in the origin of life, as proposed by some scientists, was the formation of complex organic compounds. In the 1950s, various experiments were performed and showed that if the amino acids are heated without oxygen, they link and form complex molecules called proteins. A similar process produces ATP and nucleic acids from small molecules The work of American biochemist Sidney Fox in 1992 showed how the first cells may have occurred Fox produced protocells by heating solutions of amino acids.

46 The Evolution of Cells Fossils indicate that by about 3.4 billion years ago, photosynthetic prokaryotic cells existed on Earth. But these were probably not the earliest cells. The first forms of life may have been prokaryotic forms that evolved from a protocell. Because Earth’s atmosphere lacked oxygen, scientists have proposed that these organisms were most likely anaerobic.

47 The first true cells For food, the first prokaryotes probably used some of the organic molecules that were abundant in Earth’s early oceans. Over time, these heterotrophs would have used up the food supply. However, organisms that could make food had probably evolved by the time the food was gone. These first autotrophs were probably similar to present-day archaebacteria.

48 The first true cells Archaebacteria are prokaryotic and live in harsh environments, such as deep-sea vents and hot springs.

49 The first true cells The earliest autotrophs probably made glucose by chemosynthesis rather than by photosynthesis. In chemosynthesis, autotrophs release the energy of inorganic compounds, such as sulfur compounds, in their environment to make their food. Photosynthesizing prokaryotes might have been the next type of organism to evolve. As the first photosynthetic organisms increased in number, the concentration of oxygen in Earth’s atmosphere began to increase.

50 Photosynthesizing prokaryotes
The presence of oxygen in Earth’s atmosphere probably affected life on Earth in another important way. The sun’s rays would have converted much of the oxygen into ozone molecules that would then have formed a layer that contained more ozone than the rest of the atmosphere.

51 The endosymbiont theory
Complex eukaryotic cells probably evolved from prokaryotic cells. The endosymbiont theory,proposed by American biologist Lynn Margulis in the early 1960s, explains how eukaryotic cells may have arisen The endosymbiont theory proposes that eukaryotes evolved through a symbiotic relationship between ancient prokaryotes.

52

53 The endosymbiont theory
New evidence from scientific research supports this theory and has shown that chloroplasts and mitochondria have their own ribosomes that are similar to the ribosomes in prokaryotes. In addition, both chloroplasts and mitochondria reproduce independently of the cells that contain them The fact that some modern prokaryotes live in close association with eukaryotes also supports the theory.

54 Question 1 Why did some scientists still believe in spontaneous generation after Francesco Redi’s experiments? Answer Although Redi disproved the spontaneous generation of large organisms, many scientists still believed microorganisms were so numerous and widespread that they must arise spontaneously from the air. Section 2 Check

55 Question 2 What is the difference between biogenesis and spontaneous generation? Answer Spontaneous generation is the idea that life can come from nonliving material. Biogenesis is the idea that living organisms can come only from other living organisms. Section 2 Check

56 Question 3 What two molecular developments must have preceded the appearance life on Earth? Answer The formation of simple organic molecules, and the organization of simple organic molecules into complex organic molecules like proteins, carbohydrates and nucleic acids that are essential to life. Section 2 Check

57 Question 4 Who provided evidence to support Oparin’s hypothesis that life began in the oceans on early Earth? A. Sidney Fox B. Louis Pasteur C. Francesco Redi D. Stanley Miller and Harold Urey Section 2 Check

58 The answer is D, Stanley Miller and Harold Urey.
Section 2 Check

59 The Record of Life Fossils provide a record of life on Earth. Fossils come in many forms, such as a leaf imprint, a worm burrow, or a bone. By studying fossils, scientists learn about the diversity of life and about the behavior of ancient organisms. Chapter Summary – 14.1

60 The Record of Life Fossils can provide information on ancient environments. For example, fossils can help to predict whether an area had been a river environment, terrestrial environment, or a marine environment. In addition, fossils may provide information on ancient climates. Chapter Summary – 14.1

61 The Record of Life Earth’s history is divided into the geologic time scale, based on evidence in rocks and fossils. The four major divisions in the geologic time scale are the Precambrian, Paleozoic Era, Mesozoic Era, and Cenozoic Era. The eras are further divided into periods. Chapter Summary – 14.1

62 The Origin of Life Francesco Redi and Louis Pasteur designed controlled experiments to disprove spontaneous generation. Their experiments and others like them convinced scientists to accept biogenesis. Small organic molecules might have formed from substances present in Earth’s early atmosphere and oceans. Small organic molecules can form complex organic molecules. Chapter Summary – 14.2

63 The Origin of Life The earliest organisms were probably anaerobic, heterotrophic prokaryotes. Over time, chemosynthetic prokaryotes evolved and then photosynthetic prokaryotes that produced oxygen evolved, changing the atmosphere and triggering the evolution of aerobic cells and eukaryotes. Chapter Summary – 14.2

64 Question 1 Answer Is metamorphic rock a good source of fossils?
No, the conditions under which metamorphic rocks form often destroy any fossils contained in the original sedimentary rock. Chapter Assessment

65 Question 2 Answer Why do scientists use relative dating techniques?
Relative dating allows scientists to compare the age and order of appearance of a fossil relative to those of the fossils appearing in the sedimentary layers above or below it. Chapter Assessment

66 Question 3 Why do organisms that die on the surface of the ground rarely become fossils? Answer Bacteria and fungi immediately decompose organisms exposed to the air. Chapter Assessment

67 Question 4 Why are dinosaur exhibits in museums rarely composed of real bones? Answer Minerals from sediments that covered dead dinosaurs seeped into the dinosaur’s body and eventually replaced all the body’s bone material. Chapter Assessment

68 Question 5 Scientists use the carbon-14 isotope to date fossils that are _______ years old. A. less than B. more than one million C D. more than five million Chapter Assessment

69 The answer is A, less than 70 000.
Chapter Assessment

70 Question 6 About how many years ago do fossils indicate that photosynthetic prokaryotic cells existed on Earth? A billion years B billion years C billion years D million years The answer is B, 3.4 billion years. Chapter Assessment

71 Question 7 Which forms of life developed earlier, anaerobic single-celled organisms or aerobic single-celled organisms, and why? Answer The answer is anaerobic single-celled organisms. Anaerobic single-celled organisms developed at a time when Earth’s atmosphere lacked oxygen. Aerobic organisms, which require oxygen to survive, developed later, when Earth’s atmosphere contained a supply of oxygen. Chapter Assessment

72 Question 8 Why are archaebacteria able to survive in harsh environments where most other organisms cannot? Answer Archaebacteria can release the energy of inorganic compounds in their environment to make their food rather than rely upon other organisms for their food. Chapter Assessment

73 Question 9 What was the importance of Earth’s ozone layer to the development of early organisms? Answer The ozone layer shielded early organisms from the harmful effects of ultraviolet radiation and enabled the evolution of more complex organisms. Chapter Assessment

74 Question 10 In Miller and Urey’s laboratory experiment to simulate the atmospheric conditions of early Earth, what atmospheric condition did the condenser simulate? Chapter Assessment

75 The condenser simulated rain in the atmosphere that washed organic molecules into the ocean.
Entry for hydrogen, methane, and ammonia gases Electrode High voltage source Condenser for cooling Boiling water Solution of organic compounds Chapter Assessment


Download ppt "Changes Through Time The History of Life The Theory of Evolution"

Similar presentations


Ads by Google