Presentation is loading. Please wait.

Presentation is loading. Please wait.

Astroparticle physics 3. Supernovae, neutrinos and high energy cosmic-rays in the local Universe Alberto Carramiñana Instituto Nacional de Astrofísica,

Similar presentations


Presentation on theme: "Astroparticle physics 3. Supernovae, neutrinos and high energy cosmic-rays in the local Universe Alberto Carramiñana Instituto Nacional de Astrofísica,"— Presentation transcript:

1 Astroparticle physics 3. Supernovae, neutrinos and high energy cosmic-rays in the local Universe Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla, Puebla, México Xalapa, 9 August 2004

2 Iben (1967)

3 Post main sequence M  8 M  Hydrogen burning  He core + H burning shell + envelope Helium burning: –Explosive He core burning (previous He flash)  CO white dwarf (M < 2.25 M  ) –Stable He burning  CO core + He burning shell + He layer + H burning shell + envelope (M > 2.25 M  )

4 Post Main Seq. M > 8 M  Nuclear processes: –He burning (10 8 K) together with –neutrino cooling (dominant from 5  10 8 K) –carbon burning (6  10 8 K) –oxygen burning (10 9 K) CO flash ignition  SN (I½ probably! and Ia by accretion) for not so massive stars

5 The path to the Iron catastrophe Above 8 M  : onion structure  degenerate iron core Succesive reactions (Si, S, Ar,...) : less energy per nucleon. Enhanced emission: Photodisintegration Electron capture: Arnett, Bahcall, Kirschner & Woosley (1989)

6

7 Core collapse For an isothermal star supported by a non relativistic degenerated gas: –electron degeneracy – neutron degeneracy Electron absorption  loss of e-degeneracy pressure  core collapse in free-fall time (v  70,000 km/s) Infall halts at   8  10 14 g cm –3  nucleus rebound.

8

9 Supernova explosion Bounce creates an upward prompt shock (stalled by inward shock! ). provide required energy to continue (delayed shock) Initial shock temperature  explosive Fe peak nucleosynthesis  0.08-0.40 M  of 56 Ni

10 SN 1987A

11 Feb 23.316, 1987 The brightest in 383 yrs In LMC (D  50 kpc). Intrinsically faint M=-15.5 (“only” 10 9 L  ) Blue giant precursor Sk– 69 202, M  16  22 M , core  5  7 M   0.07 M  of 56 Ni  56 Co

12 Neutrinos from SN1987A First observational evidence of neutron star formation Observed by at least two experiments. Neutrinos from bounce (1% in 20 ms) and from cooling (99% in few s) Arnett, Bahcall, Kirschner & Woosley (1989)

13 Neutrino properties from SN1987A Neutrino mass  16 eV Neutrino charge Lifetime Same speed and geodesics for neutrinos and photons (within 10 -8 )

14 The local group of Galaxies

15 Cosmic-ray all energy spectrum Power-law: Secondaries (B) have steeper spectra than primaries (C,O). k = 2.7 k = 3.0 k = 2.8 15/27

16 Cosmic-rays: propagation Cosmic-rays do not propagate in straight lines: trapped by Galactic magnetic field (average 3  G) Transport equation: –Leaky box model: CR travel path: Proton injection spectrum: – 10 Be (mean life 3.9 Myrs) analysis: (Garcia-Muñoz, Mason & Simpson 1977)

17 Cosmic-rays below the knee Knee: 10 15 eV when: –a  h(disc) –Theoretical sources loose efficiency Directional information?

18 Cosmic-ray sources: limits Few sources with enough energetics Waxman, astro-ph/0310079

19 GZK limit Greisen-Zatsepin –Kuzmin (1966)

20 Or no GZK limit? 20/27

21 The local Universe Normal and radio galaxies.

22 Nearby cosmic rays? Galactic halo? Concentrations of galaxies in the nearby Universe (red) and voids (yellow); if the cosmic rays were coming from radio galaxies or quasars we would expect some bias towards these directions. Hillas (1998) 4% anisotropy above 1e18 eV (AGASA experiment)

23 Extragalactic  -ray sources Blazars (“radio loud flat spectrum AGNs”) Typically at high redshifts (z  2).

24 Active Galaxies AGN zoo: –Starburst –Seyferts & radio galaxies –Quasars, BL Lacs AGN standard model: –accreting supermassive black hole (10 6 to 10 9 M  ) –AGN type depends on orientation

25  -ray blazars Over 50 extragalactic EGRET sources: –BL Lacs & FSRQ (z=0.03 to 2.3) Closest: Mk 421 (@120 Mpc), 2230+114 (@ 280 Mpc), –Radiogalaxy Cen A (@ 6 Mpc) –Spectra cannot show  0 bumps (GLAST?) Synchrotron Self-Compton models: hadronic & leptonic 25/27

26 TeV detections Mk 421: the nearest EGRET FSRQ (@120 Mpc) Mk 501: nearby FSRQ, undetected by EGRET Both up to 10 TeV GZK-like limit? FIR background...

27 The GZK problem High energy cosmic-rays must be extragalactic. High energy cosmic-rays must come from nearby (less than 50 Mpc). No obvious sources within GZK distance –unless all HECRs come from Cen A (and simils...) –unclear anisotropy / point source situation... Top-down scenario? The Pierre Auger Observatory


Download ppt "Astroparticle physics 3. Supernovae, neutrinos and high energy cosmic-rays in the local Universe Alberto Carramiñana Instituto Nacional de Astrofísica,"

Similar presentations


Ads by Google