Presentation is loading. Please wait.

Presentation is loading. Please wait.

IB Physics. Folders, text books, calculators, data booklet.

Similar presentations


Presentation on theme: "IB Physics. Folders, text books, calculators, data booklet."— Presentation transcript:

1 IB Physics

2 Folders, text books, calculators, data booklet.

3 Assessment Paper 1 (Multiple Choice) 20% Paper 2 (Extended response- some choice) 32% SL, 36% HL Paper 3 (Options) 24% SL 20% HL CourseworkSL-40 hours HL-60 hours 24%

4 Assessment Paper 1 (Multiple Choice) 45mins SL 1 hr HL Paper 2 (Extended response- some choice) 1¼ hr SL, 2¼ hr HL Paper 3 (Options) 1 hr SL 1¼ HL CourseworkSL-40 hours HL-60 hours

5 Structure of course Year 12 – ALL standard level units (1 to 8) Year 13 – Options and HL units (9 – 14)

6 www.mrsimonporter.wikispaces.com MrSimonPorter – home Twitter

7 Safety

8 Topic 1 – Physics and Physical measurement Use the syllabus particularly when studying for examinations

9 Ranges of sizes, masses and times

10 Order of magnitude We can express small and large numbers using exponential notation The number of atoms in 12g of carbon is approximately 600000000000000000000000 This can be written as 6 x 10 23

11 Order of magnitude We can say to the nearest order of magnitude (nearest power of 10) that the number of atoms in 12g of carbon is 10 24 (6 x 10 23 is 1 x 10 24 to one significant figure)

12 Small numbers Similarly the length of a virus is 2.3 x 10 -8 m. We can say to the nearest order of magnitude the length of a virus is 10 -8 m.

13 Ranges of sizes, masses and times You need to have an idea of the ranges of sizes, masses and times that occur in the universe.

14 Size Can you think of 5 objects? Can you then list them in order of decreasing size (length)

15 Size Which is the smallest on your list? What size is it to the nearest order of magnitude?

16 Size The smallest objects that you need to consider in IB physics are subatomic particles (protons and neutrons). These have a size (to the nearest order of magnitude) of 10 -15 m.

17 Size Which is the largest on your list? How large is it to the nearest order of magnitude?

18 Size The largest object that you need to consider in IB physics is the Universe. The Universe has a size (to the nearest order of magnitude) of 10 25 m.

19 Mass On your paper can you estimate the masses of the largest and smallest objects you have written?

20 Mass The lightest particle you have to consider is the electron. What do you think the mass of the electron is? 10 -30 kg! (0.000000000000000000000000000001 kg)

21 Mass We have already decided that the Universe is the largest object. What do you think its mass is? 10 50 kg (100000000000000000000000000000000000000000000000000 kg)

22 Time Now think of 5 time intervals (For example, the time it takes to walk from Maths to Physics, the time it takes to walk from Physics to Maths etc.)

23 Time The smallest time interval you need to know is the time it takes light to travel across a nucleus. Can you estimate it? 10 -24 seconds

24 Time What’s the longest time interval you thought of?

25 The age of the universe. Any ideas? Time

26 The age of the universe. 12 -14 billion years 10 18 seconds

27 Copy please! Size 10 -15 m to 10 25 m (subatomic particles to the extent of the visible universe) Mass 10 -30 kg to 10 50 kg (mass of electron to the mass of the Universe) Time 10 -24 s to 10 18 s (time for light to cross a nucleus to the age of the Universe)

28 A common ratio – Learn this! Hydrogen atom ≈ 10 -10 m Proton ≈ 10 -15 m Ratio of diameter of a hydrogen atom to its nucleus = 10 -10 /10 -15 = 10 5

29 Estimation For IB you have to be able to make order of magnitude estimates.

30 Estimation/Guess What’s the difference?

31 Estimate the following: 1.The mass of an apple (to the nearest order of magnitude)

32 Estimate the following: 1.The mass of an apple 2.The number of times a human heart beats in a lifetime. (to the nearest order of magnitude)

33 Estimate the following: 1.The mass of an apple 2.The number of times a human heart beats in a lifetime. 3.The speed a cockroach can run. (to the nearest order of magnitude) A fast South American one!

34 Estimate the following: 1.The mass of an apple 2.The number of times a human heart beats in a lifetime. 3.The speed a cockroach can run. 4.The number of times the earth will fit into the sun (R s = 6.96 x 10 8 m, R e = 6.35 x 10 6 m) (to the nearest order of magnitude)

35 Estimate the following: 1.The mass of an apple 2.The number of times a human heart beats in a lifetime. 3.The speed a cockroach can run. 4.The number of times the earth will fit into the sun (R s = 6.96 x 10 8, R e = 6.35 x 10 6 ) (to the nearest order of magnitude)

36 Estimate the following: 1.The mass of an apple 10 -1 kg 2.The number of times a human heart beats in a lifetime. 3.The speed a cockroach can run. 4.The number of times the earth will fit into the sun (R s = 6.96 x 10 8, R e = 6.35 x 10 6 ) (to the nearest order of magnitude)

37 Estimate the following: 1.The mass of an apple 10 -1 kg 2.The number of times a human heart beats in a lifetime. 70x60x24x365x70=10 9 3.The speed a cockroach can run. 4.The number of times the earth will fit into the sun (R s = 6.96 x 10 8, R e = 6.35 x 10 6 ) (to the nearest order of magnitude)

38 Estimate the following: 1.The mass of an apple 10 -1 kg 2.The number of times a human heart beats in a lifetime. 70x60x24x365x70=10 9 3.The speed a cockroach can run. 10 0 m/s 4.The number of times the earth will fit into the sun (R s = 6.96 x 10 8, R e = 6.35 x 10 6 ) (to the nearest order of magnitude)

39 Estimate the following: 1.The mass of an apple 10 -1 kg 2.The number of times a human heart beats in a lifetime. 70x60x24x365x70=10 9 3.The speed a cockroach can run. 10 0 m/s 4.The number of times the earth will fit into the sun (6.96 x 10 8 ) 3 /(6.35 x 10 6 ) 3 = 10 6 (to the nearest order of magnitude)

40 Estimate the following: 1.The mass of an apple 10 -1 kg 2.The number of times a human heart beats in a lifetime. 70x60x24x365x70=10 9 3.The speed a cockroach can run. 10 0 m/s 4.The number of times the earth will fit into the sun (6.96 x 10 8 ) 3 /(6.35 x 10 6 ) 3 = 10 6 (to the nearest order of magnitude)

41 Let’s do some more estimating!


Download ppt "IB Physics. Folders, text books, calculators, data booklet."

Similar presentations


Ads by Google