# 13.4 Geometric Sequences and Series Example:3, 6, 12, 24, … This sequence is geometric. r is the common ratio r = 2.

## Presentation on theme: "13.4 Geometric Sequences and Series Example:3, 6, 12, 24, … This sequence is geometric. r is the common ratio r = 2."— Presentation transcript:

13.4 Geometric Sequences and Series Example:3, 6, 12, 24, … This sequence is geometric. r is the common ratio r = 2

Geometric Sequence Explicit Formula (Closed Form) Recursive Formula Using the recursive form, we can develop an alternative recursive form. (k is the difference between term numbers)

Find the next two terms of the geometric sequence 1200, 480, 192, …. Write an equation (explicit and recursive) for the nth term of the geometric sequence 3.6, 10.8, 32.4, ….

The fifth term of a geometric sequence is 48 and the ninth term is 768. Find the first term and the common ratio.

Geometric Means Geometric means have the same relationship to geometric sequences that arithmetic means have to arithmetic sequences. Find a geometric mean between 3 and 12.

Insert three real geometric means between 96 and 6.

Evaluate

Find the three geometric means between 8 and 40.5. Find the sum of the geometric series.

Find in a geometric series for which. Find the sum of the infinite geometric series, if it exists. #175+15+3+… #2

Find the sum of each series. #1 #2 #3 #4

Download ppt "13.4 Geometric Sequences and Series Example:3, 6, 12, 24, … This sequence is geometric. r is the common ratio r = 2."

Similar presentations