Download presentation

Presentation is loading. Please wait.

Published byAlberta Page Modified over 8 years ago

1
Solutions to Tutorial 5 Problems Source Sum of Squares df Mean Square F-test Regression2174.41 40.34 Residual862.51653.9 Total3036.917 ANOVA Table Variable Coefficients s.e. T-test P-value Constant3.43179*12.95.265*.7941* X1.9025.1421*6.35<.0001* n=18R^2=.716*Ra^2=.698S=7.342*df=16 Coefficient Table Problem 1

3
Problem 2

5
The Full Medel for (a),(b), and (c ) Results for: P081.txt Regression Analysis: Sales versus Age, HS, Income, Black, Female, Price The regression equation is Sales = 103 + 4.52 Age - 0.062 HS + 0.0189 Income + 0.358 Black - 1.05 Female - 3.25 Price Predictor Coef SE Coef T P Constant 103.3 245.6 0.42 0.676 Age 4.520 3.220 1.40 0.167 HS -0.0616 0.8147 -0.08 0.940 Income 0.01895 0.01022 1.85 0.070 Black 0.3575 0.4872 0.73 0.467 Female -1.053 5.561 -0.19 0.851 Price -3.255 1.031 -3.16 0.003 S = 28.17 R-Sq = 32.1% R-Sq(adj) = 22.8% Analysis of Variance Source DF SS MS F P Regression 6 16499.5 2749.9 3.46 0.007 Residual Error 44 34926.0 793.8 Total 50 51425.4

6
The RM for (b) Regression Analysis: Sales versus Age, Income, Black, Price The regression equation is Sales = 55.3 + 4.19 Age + 0.0189 Income + 0.334 Black - 3.24 Price Predictor Coef SE Coef T P Constant 55.33 62.40 0.89 0.380 Age 4.192 2.196 1.91 0.062 Income 0.018892 0.006882 2.75 0.009 Black 0.3342 0.3121 1.07 0.290 Price -3.2399 0.9988 -3.24 0.002 S = 27.57 R-Sq = 32.0% R-Sq(adj) = 26.1% Analysis of Variance Source DF SS MS F P Regression 4 16465.7 4116.4 5.42 0.001 Residual Error 46 34959.8 760.0 Total 50 51425.4

7
(d) Regression Analysis: Sales versus Age, HS, Black, Female, Price The regression equation is Sales = 162 + 7.31 Age + 0.972 HS + 0.845 Black - 3.78 Female - 2.86 Price Predictor Coef SE Coef T P Constant 162.3 250.1 0.65 0.520 Age 7.307 2.924 2.50 0.016 HS 0.9717 0.6103 1.59 0.118 Black 0.8447 0.4213 2.00 0.051 Female -3.781 5.506 -0.69 0.496 Price -2.860 1.036 -2.76 0.008 S = 28.93 R-Sq = 26.8% R-Sq(adj) = 18.6% Analysis of Variance Source DF SS MS F P Regression 5 13769.3 2753.9 3.29 0.013 Residual Error 45 37656.1 836.8 Total 50 51425.4

8
(e) Regression Analysis: Sales versus Age, Income, Price The regression equation is Sales = 64.2 + 4.16 Age + 0.0193 Income - 3.40 Price Predictor Coef SE Coef T P Constant 64.25 61.93 1.04 0.305 Age 4.156 2.199 1.89 0.065 Income 0.019281 0.006883 2.80 0.007 Price -3.3992 0.9892 -3.44 0.001 S = 27.61 R-Sq = 30.3% R-Sq(adj) = 25.9% Analysis of Variance Source DF SS MS F P Regression 3 15594.4 5198.1 6.82 0.001 Residual Error 47 35831.0 762.4 Total 50 51425.4

9
(f) Regression Analysis: Sales versus Income The regression equation is Sales = 55.4 + 0.0176 Income Predictor Coef SE Coef T P Constant 55.36 27.74 2.00 0.052 Income 0.017583 0.007283 2.41 0.020 S = 30.63 R-Sq = 10.6% R-Sq(adj) = 8.8% Analysis of Variance Source DF SS MS F P Regression 1 5467.6 5467.6 5.83 0.020 Residual Error 49 45957.9 937.9 Total 50 51425.4

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google