Presentation is loading. Please wait.

Presentation is loading. Please wait.

Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department.

Similar presentations


Presentation on theme: "Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department."— Presentation transcript:

1 Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department of Chemistry, UIUC ISMS-RG 06

2 Alkali metals (Li, Na, K, Rb and Cs) are important chemical and biochemical elements. –Na and K are essential elements –Balance of electrolyte and osmotic pressure [1] –Electroneurographic signal transmission [1] –Li and Rb are used in treatment of bipolar disorder and depression [2,3] Introduction 2 [1] Berg, J. M., Tymoczko, J. L., Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, 2010. [2] Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., Hennen, J. Bipolar Disord. 2006, 8 (2), 625–639. [3] Torta, R., Ala, G.; Borio, R., Cicolin, A., Costamagna, S., Fiori, L., Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110.

3 M + (H 2 O) n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems. –Structures of (H 2 O) n [4] –Structures of H + (H 2 O) n [5] Introduction 3 [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026. [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, 1398-1410 [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, 12302-12311 “The name ‘MB’ arises because there are three hydrogen- bonding arms, arranged as in the Mercedes Benz logo” [6]

4 Introduction M + (H 2 O) n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems. –What are the structures of M + (H 2 O) n ? –Many calculations [7-9] –Limited experimental data [10,11] 4 …… [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067. [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116. [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, 74302. [10] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393–15404. [11] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.

5 Research Methods—Experiment Q2 Detection Chamber Differential Chamber 10 Hz Nd 3+ :YAG (1064 nm) ~500 mJ/pulse Tunable LaserVision OPO/A 1.35~10 µm ~ 5mJ/pulse Triple Quadrupole Mass Spectrometer Tunable Infrared Laser Source Chamber InfraRed PhotoDissociation Spectroscopy (IRPD) hνhν Negligible multiple-photon absorption [12,13] Q1 Q3 5 [12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373. [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, 44302.

6 Research Methods—Calculation Ab initio calculations –Stable structures and energies –MP2 level –O, H, Ar, Li + and Na +, aug-cc-pVDZ –K +, Rb + and Cs +, Los Alamos double-ζ basis sets (LANL2DZ) –No Basis Set Superposition Error (BSSE) correction Rice-Ramsperger-Kassel-Marcus Evaporative-Ensemble (RRKM-EE) calculations –Unimolecular dissociation rate –Effective cluster temperature (50~150K [12] ) –Kinetic shift effect (negligible for M + (H 2 O) n in this apparatus [13] ) 6 [12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

7 53.5 kJ/mol 5.5 kJ/mol Energy Threshold (38.3) (39.5) (40.7) (41.9) (43.1) (44.3) (45.5)Equivalent Photon Energy (kJ/mol) Spectral and Energy Analysis Na + (H 2 O) 5 Ar Frequency (cm -1 ) 7 N5f 17.0 kJ/mol N5c 11.7 kJ/mol N5b 11.8 kJ/mol N5a 4.7 kJ/mol <53.5 kJ/mol suppressed >53.5 kJ/mol survived

8 Structures of M + (H 2 O) 3 Ar 2+1 3+0 8

9 Structures of M + (H 2 O) 4 Ar 3+1 4+0 C4 9

10 Structures of M + (H 2 O) 5 Ar 4+1 3+1+1 5+0 C4 5+0 C5 10 3+2 ?

11 Summary M + (H 2 O) 3 Ar M + (H 2 O) 4 Ar 3+0 2+1 Li, NaCs K, Rb 3+1 4+0 C4 Li, Na, K, Rb Cs 11

12 M + (H 2 O) 5 Ar 12 Summary 3+1+1 Li, Na 5+0 C4 Rb, Cs 4+1 Li, Na, K, Rb, Cs 5+0 C5 Cs 3+2 ? Li

13 Future Work Quantitative characterization, charge density vs structure Estimate H 2 O binding energy –M + (H 2 O) n → M + (H 2 O) n-1 + H 2 O [12] Biochemical molecules, i.e. 2-amino-1-phenyl ethanol and ephedrine/pseudoephedrine M + (H 2 O) 1 Ar n rotational structures –Christian van der Linde’s presentation –RJ11, Room 274, Medical Sciences Building, 04:25 PM 13 [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

14 Acknowledgement Colleagues –Prof. James M. Lisy and Dr. Christian van der Linde –Prof. Benjamin McCall’s Group National Science Foundation CHE11-24821 14

15 [1] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, 2010. [2] Baldessarini, R. J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F. K.; Hennen, J. Bipolar Disord. 2006, 8 (5p2), 625–639. [3] Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110. [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026. [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, 1398-1410 [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, 12302-12311 [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067. [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116. [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, 74302. [10] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393–15404. [11] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392. [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373. [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, 44302. Reference 15


Download ppt "Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department."

Similar presentations


Ads by Google