Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.

Similar presentations


Presentation on theme: "Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell."— Presentation transcript:

1 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Chapter 9 Cellular Respiration: Harvesting Chemical Energy

2 What you need to know… The difference between fermentation and cellular respiration. The role of glycolysis in oxidizing glucose to two molecules of pyruvate. The process that brings pyruvate from the cytosol into the mitocondria and introduces it into the citric acid cycle (calvin cycle). How the process of chemiosmosis utilizes the electrons from NADH and FADH 2 to produce ATP. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

3 Disclaimer Oxidation-reduction reactions, fermentation, cellular respiration, and photosynthesis are covered in one of the most technically challenging sections of your textbook. Here, we are going to focus on the major steps of each of the processes as well as the results. The AP Exam is most likely to focus on the net results and not the exact reactions!

4 Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration Cells use chemical energy stored in organic molecules to regenerate ATP, which powers work Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Brief Overview

5 Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular work Heat energy ATP

6 Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Catabolic pathways – occur when molecules are broken down and their energy is released 2 Types – Fermentation – partial degradation of sugars that occurs with the use of oxygen (Anaerobic Respiration) – Cellular respiration – most prevalent and efficient catabolic pathway, where oxygen is consumed as a reactant along with the organic fuel (Aerobic Respiration) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

7 Catabolic Pathways and Production of ATP The breakdown of organic molecules is exergonic Fermentation is a partial degradation of sugars that occurs without O 2 Aerobic respiration consumes organic molecules and O 2 and yields ATP Anaerobic respiration is similar to aerobic respiration but consumes compounds other than O 2 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

8 Cellular respiration includes both aerobic and anaerobic respiration but is often used to refer to aerobic respiration Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to trace cellular respiration with the sugar glucose: C 6 H 12 O 6 + 6 O 2  6 CO 2 + 6 H 2 O + Energy (ATP + heat) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

9 Redox Reactions: Oxidation and Reduction The transfer of electrons during chemical reactions releases energy stored in organic molecules This released energy is ultimately used to synthesize ATP LEO goes GER Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

10 The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation-reduction reactions, or redox reactions In oxidation, a substance loses electrons, or is oxidized In reduction, a substance gains electrons, or is reduced (the amount of positive charge is reduced) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

11 Fig. 9-UN1 becomes oxidized (loses electron) becomes reduced (gains electron)

12 Fig. 9-UN2 becomes oxidized becomes reduced

13 Oxidation of Organic Fuel Molecules During Cellular Respiration During cellular respiration, the fuel (such as glucose) is oxidized, and O 2 is reduced: Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

14 Fig. 9-UN3 becomes oxidized becomes reduced

15 Stepwise Energy Harvest via NAD + and the Electron Transport Chain Cellular respiration - glucose and other organic molecules are broken down in a series of steps – Electrons from organic compounds are usually first transferred to NAD +, a coenzyme – As an electron acceptor, NAD + functions as an oxidizing agent during cellular respiration – Each NADH (the reduced form of NAD + ) represents stored energy that is tapped to synthesize ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

16 Fig. 9-4 Dehydrogenase Reduction of NAD + Oxidation of NADH 2 e – + 2 H + 2 e – + H + NAD + + 2[H] NADH + H+H+ H+H+ Nicotinamide (oxidized form) Nicotinamide (reduced form)

17 NADH passes the electrons to the electron transport chain Unlike an uncontrolled reaction, the electron transport chain passes electrons in a series of steps instead of one explosive reaction O 2 pulls electrons down the chain in an energy- yielding tumble The energy yielded is used to regenerate ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Stepwise Energy Harvest via NAD+ and the Electron Transport Chain

18 Fig. 9-5 Free energy, G (a) Uncontrolled reaction H2OH2O H 2 + 1 / 2 O 2 Explosive release of heat and light energy (b) Cellular respiration Controlled release of energy for synthesis of ATP 2 H + + 2 e – 2 H + 1 / 2 O 2 (from food via NADH) ATP 1 / 2 O 2 2 H + 2 e – Electron transport chain H2OH2O

19 The Stages of Cellular Respiration: A Preview Cellular respiration has three stages: – Glycolysis (breaks down glucose into two molecules of pyruvate) – The citric acid cycle (completes the breakdown of glucose) – Oxidative phosphorylation (accounts for most of the ATP synthesis) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

20 Fig. 9-6-1 Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH

21 Fig. 9-6-2 Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Citric acid cycle

22 Fig. 9-6-3 Mitochondrion Substrate-level phosphorylation ATP Cytosol Glucose Pyruvate Glycolysis Electrons carried via NADH Substrate-level phosphorylation ATP Electrons carried via NADH and FADH 2 Oxidative phosphorylation ATP Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis

23 The process that generates most of the ATP is called oxidative phosphorylation because it is powered by redox reactions BioFlix: Cellular Respiration BioFlix: Cellular Respiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

24 Oxidative phosphorylation accounts for almost 90% of the ATP generated by cellular respiration A smaller amount of ATP is formed in glycolysis and the citric acid cycle by substrate-level phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

25 Fig. 9-7 Enzyme ADP P Substrate Enzyme ATP + Product Substrate Level Phosphorylation

26 Concept 9.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate Glycolysis (“splitting of sugar”) breaks down glucose into two molecules of pyruvate Glycolysis occurs in the cytoplasm and has two major phases: – Energy investment phase – Energy payoff phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

27 Fig. 9-8 Energy investment phase Glucose 2 ADP + 2 P 2 ATPused formed 4 ATP Energy payoff phase 4 ADP + 4 P 2 NAD + + 4 e – + 4 H + 2 NADH + 2 H + 2 Pyruvate + 2 H 2 O Glucose Net 4 ATP formed – 2 ATP used2 ATP 2 NAD + + 4 e – + 4 H + 2 NADH + 2 H +

28 Concept 9.3: The citric acid cycle completes the energy-yielding oxidation of organic molecules In the presence of O 2, pyruvate enters the mitochondrion (aerobic respiration) Before the citric acid cycle can begin, pyruvate must be converted to acetyl CoA, which links the cycle to glycolysis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

29 Fig. 9-10 CYTOSOLMITOCHONDRION NAD + NADH+ H + 2 1 3 Pyruvate Transport protein CO 2 Coenzyme A Acetyl CoA

30 Takes place within the mitochondrial matrix Oxidizes organic fuel derived from pyruvate and generates – 1 ATP per turn – 3 NADH per turn – 1 FADH 2 per turn – 2 CO 2 per turn 1 Glucose yields 2 Pyruvates so really, you get double all the products per glucose Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Citric Acid Cycle/Krebs Cycle Electron Carriers – will go to the ETC

31 Fig. 9-11 Pyruvate NAD + NADH + H + Acetyl CoA CO 2 CoA Citric acid cycle FADH 2 FAD CO 2 2 3 3 NAD + + 3 H + ADP +P i ATP NADH

32 Eight steps - each catalyzed by a specific enzyme Acetyl group of acetyl CoA joins the cycle by combining with oxaloacetate, forming citrate Next seven steps decompose the citrate back to oxaloacetate, making the process a cycle NADH and FADH 2 produced by the cycle relay electrons extracted from food to the electron transport chain Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Citric Acid Cycle/Krebs Cycle

33 Fig. 9-12-1 Acetyl CoA Oxaloacetate CoA—SH 1 Citrate Citric acid cycle

34 Fig. 9-12-8 Acetyl CoA CoA—SH Citrate H2OH2O Isocitrate NAD + NADH + H + CO2CO2  -Keto- glutarate CoA—SH CO2CO2 NAD + NADH + H + Succinyl CoA CoA—SH P i GTP GDP ADP ATP Succinate FAD FADH 2 Fumarate Citric acid cycle H2OH2O Malate Oxaloacetate NADH +H + NAD + 1 2 3 4 5 6 7 8

35 Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis Following glycolysis and the citric acid cycle, NADH and FADH 2 account for most of the energy extracted from food These two electron carriers donate electrons to the electron transport chain, which powers ATP synthesis via oxidative phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

36 The Pathway of Electron Transport ETC located in the cristae (folds) of the mitochondrion Most of the chain’s components are proteins, which exist in multiprotein complexes The carriers alternate reduced and oxidized states as they accept and donate electrons Electrons drop in free energy as they go down the chain and are finally passed to O 2, forming H 2 O Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

37 Fig. 9-13 NADH NAD + 2 FADH 2 2 FAD Multiprotein complexes FAD FeS FMN FeS Q  Cyt b   Cyt c 1 Cyt c Cyt a Cyt a 3 IVIV Free energy (G) relative to O 2 (kcal/mol) 50 40 30 20 10 2 (from NADH or FADH 2 ) 0 2 H + + 1 / 2 O2O2 H2OH2O e–e– e–e– e–e–

38 Electrons are transferred from NADH or FADH 2 to the electron transport chain Electrons are passed through a number of proteins including cytochromes (each with an iron atom) to O 2 The electron transport chain generates no ATP The chain’s function is to break the large free- energy drop from food to O 2 into smaller steps that release energy in manageable amounts Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

39 Chemiosmosis: The Energy-Coupling Mechanism Electron transfer in the electron transport chain causes proteins to pump H + from the mitochondrial matrix to the intermembrane space H + then moves back across the membrane, passing through channels in ATP synthase ATP synthase uses the exergonic flow of H + to drive phosphorylation of ATP This is an example of chemiosmosis, the use of energy in a H + gradient to drive cellular work Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

40 Fig. 9-14 INTERMEMBRANE SPACE Rotor H+H+ Stator Internal rod Cata- lytic knob ADP + P ATP i MITOCHONDRIAL MATRIX

41 The energy stored in a H + gradient across a membrane couples the redox reactions of the electron transport chain to ATP synthesis The H + gradient is referred to as a proton- motive force, emphasizing its capacity to do work Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

42 Fig. 9-16 Protein complex of electron carriers H+H+ H+H+ H+H+ Cyt c Q    VV FADH 2 FAD NAD + NADH (carrying electrons from food) Electron transport chain 2 H + + 1 / 2 O 2 H2OH2O ADP + P i Chemiosmosis Oxidative phosphorylation H+H+ H+H+ ATP synthase ATP 21

43 An Accounting of ATP Production by Cellular Respiration During cellular respiration, most energy flows in this sequence: glucose  NADH  electron transport chain  proton-motive force  ATP About 40% of the energy in a glucose molecule is transferred to ATP during cellular respiration, making about 38 ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

44 Fig. 9-17 Maximum per glucose: About 36 or 38 ATP + 2 ATP + about 32 or 34 ATP Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle 2 Acetyl CoA Glycolysis Glucose 2 Pyruvate 2 NADH 6 NADH2 FADH 2 2 NADH CYTOSOL Electron shuttles span membrane or MITOCHONDRION

45 Concept 9.5: Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen Most cellular respiration requires O 2 to produce ATP Glycolysis can produce ATP with or without O 2 (in aerobic or anaerobic conditions) In the absence of O 2, glycolysis couples with fermentation or anaerobic respiration to produce ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

46 Anaerobic respiration uses an electron transport chain with an electron acceptor other than O 2, for example sulfate Fermentation uses phosphorylation instead of an electron transport chain to generate ATP Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

47 Types of Fermentation Fermentation consists of glycolysis plus reactions that regenerate NAD +, which can be reused by glycolysis Two common types: – alcohol fermentation (yeast) – lactic acid fermentation (fungi, bacteria, and muscles) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

48 In alcohol fermentation, pyruvate is converted to ethanol in two steps, with the first releasing CO 2 Alcohol fermentation by yeast is used in brewing, winemaking, and baking Animation: Fermentation Overview Animation: Fermentation Overview Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

49 Fig. 9-18a 2 ADP + 2 P i 2 ATP GlucoseGlycolysis 2 Pyruvate 2 NADH2 NAD + + 2 H + CO 2 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation 2

50 In lactic acid fermentation, pyruvate is reduced to NADH, forming lactate as an end product, with no release of CO 2 Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt Human muscle cells use lactic acid fermentation to generate ATP when O 2 is scarce Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

51 Fig. 9-18b Glucose 2 ADP + 2 P i 2 ATP Glycolysis 2 NAD + 2 NADH + 2 H + 2 Pyruvate 2 Lactate (b) Lactic acid fermentation

52 Fermentation and Aerobic Respiration Compared Both processes use glycolysis to oxidize glucose and other organic fuels to pyruvate The processes have different final electron acceptors: – an organic molecule (such as pyruvate or acetaldehyde) in fermentation – O 2 in cellular respiration Cellular respiration produces 38 ATP per glucose molecule; fermentation produces 2 ATP per glucose molecule Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

53 Obligate anaerobes carry out fermentation or anaerobic respiration and cannot survive in the presence of O 2 Yeast and many bacteria are facultative anaerobes, meaning that they can survive using either fermentation or cellular respiration In a facultative anaerobe, pyruvate is a fork in the metabolic road that leads to two alternative catabolic routes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Types of Anaerobes

54 Fig. 9-19 Glucose Glycolysis Pyruvate CYTOSOL No O 2 present: Fermentation O 2 present: Aerobic cellular respiration MITOCHONDRION Acetyl CoA Ethanol or lactate Citric acid cycle

55 The Evolutionary Significance of Glycolysis Glycolysis occurs in nearly all organisms Glycolysis probably evolved in ancient prokaryotes before there was oxygen in the atmosphere Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

56 Concept 9.6: Glycolysis and the citric acid cycle connect to many other metabolic pathways Gycolysis and the citric acid cycle are major intersections to various catabolic and anabolic pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

57 Fig. 9-20 Proteins Carbohydrates Amino acids Sugars Fats GlycerolFatty acids Glycolysis Glucose Glyceraldehyde-3- Pyruvate P NH 3 Acetyl CoA Citric acid cycle Oxidative phosphorylation

58 Biosynthesis (Anabolic Pathways) The body uses small molecules to build other substances such as macromolecules These small molecules may come directly from food, from glycolysis, or from the citric acid cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

59 You should now be able to: 1.Explain in general terms how redox reactions are involved in energy exchanges 2.Name the three stages of cellular respiration; for each, state the region of the eukaryotic cell where it occurs and the products that result 3.In general terms, explain the role of the electron transport chain in cellular respiration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

60 4.Explain where and how the respiratory electron transport chain creates a proton gradient 5.Distinguish between fermentation and anaerobic respiration 6.Distinguish between obligate and facultative anaerobes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Download ppt "Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell."

Similar presentations


Ads by Google